Abstract
High strength, high conductivity copper alloys that can resist creep at high temperatures are one of the primary candidates for efficient heat exchangers in fusion reactors. Cu–Cr–Nb–Zr (CCNZ) alloys, which were designed to improve the strength and creep life of ITER Cu–Cr–Zr (CCZ) reference alloys, have been found to have comparable electrical conductivity and tensile properties to CCZ alloys. The measured creep rupture times for these improved alloys is about ten times higher than the ITER reference alloys at 90–125 MPa at 500 °C. However, the effects of neutron irradiation on these alloys, and the ensuing material properties, have not been studied; thus, their utility in a fusion reactor environment is not well understood. This study characterizes the room temperature mechanical and electrical properties of a neutron-irradiated CCNZ alloy and compares them to a neutron-irradiated ITER reference heat sink CCZ alloy. Tensile specimens were neutron irradiated in the High Flux Isotope Reactor (HFIR) to 5 dpa between 250 °C and 325 °C. Post-irradiation characterization included electrical resistivity measurements, hardness, and tensile tests. Microstructural evaluation used scanning electron microscopy, energy dispersive x-ray spectroscopy, and atom probe tomography to characterize the irradiation-produced changes in the microstructure and investigate the mechanistic processes leading to post-irradiation properties. Transmutation calculations were validated with composition measurements from atom probe data and used to calculate contributions to the increased electrical resistivity measured after irradiation. Comparisons with CCZ alloys in the same irradiation heat found that the post-irradiated CCNZ and CCZ alloys had comparable electrical resistivity. Although CCNZ alloys suffered more irradiation hardening than CCZ, the overall tensile behavior deviated very little from nonirradiated values in the temperature range studied.