Skip to main content

Physical Sciences Directorate

Delivering scientific discoveries and technical breakthroughs

The Physical Sciences Directorate (PSD) conducts highly integrated basic and applied research programs that develop new materials, chemical processes, and technologies for energy generation and storage and environmentally benign energy use. Our research encompasses foundational science in chemistry, materials science, nanoscience, and physics.

Our scientists work in a collaborative environment to develop composites and alloys to withstand the extreme environments in nuclear and fusion reactors, understand why there is more matter than antimatter in the universe, design new catalysts for abundant and affordable energy, support the search for new superheavy elements, develop strong lightweight materials for energy-efficient transportation, enable safer high-performance solid-state batteries, advance direct air capture of carbon dioxide for waste-to-energy solutions, develop self-healing polymers for energy-efficient buildings, and advance new materials for quantum sensing and quantum computing. 

Our R&D portfolio spans from scientific discovery to technology transfer. It integrates precise synthesis and advanced processing methods with theory, modeling and simulation, and state-of-the art characterization tools, using ORNL’s signature strengths in high-performance computing, data science, and neutron scattering. PSD is also home to the Center for Nanophase Materials Sciences.

Over the next decade, PSD will deliver the foundational knowledge needed for the discovery, design, synthesis, and fabrication of next-generation materials with novel structures, properties, and function to address pressing energy, environmental, and national security challenges. We will deliver fundamental insight regarding chemical transformations and energy flow in systems and provide an understanding of the origin and nature of matter. We will move beyond current approaches to scientific discovery and drive a “science of the future” strategy by integrating high-performance computing, data science, and artificial intelligence with materials synthesis, fabrication, and characterization to accelerate the innovation cycle. We will take advantage of advances in precision synthesis, quantum information science, neutron scattering, and characterization across length and time scales to redefine how the world makes, understands, and uses materials.

Discover current opportunities to join our team.

 

Contact

Associate Lab Director, Physical Sciences
Cynthia Jenks

Virtual Tours

Newspaper Icon
1087
Journal publications in Fiscal Year 2023
Person silhouette icon
514
Employees in Fiscal Year 2023
Handshake
750+
Unique users in Fiscal Year 2023
Bar graph with arrow going up
35
Patents issued in Fiscal Year 2023

Virtual Tour

Explore a range of lab spaces and equipment used in nanoscience research, including instrumentation used in nanomaterials synthesis, nanofabrication, microscopy, and modeling and simulation at this DOE Office of Science user facility.

Facilities