Skip to main content
SHARE
Publication

Temperature-Dependent Thermal and Mechanical Properties of a Wire Arc Additively Manufactured Low Transformation Temperature Steel

Publication Type
Journal
Journal Name
Metallurgical and Materials Transactions A
Publication Date
Page Numbers
854 to 868
Volume
54A
Issue
3

Recent research has studied the use of low transformation temperature (LTT) martensite steel as feedstock for wire arc additive manufacturing (WAAM) and low tensile residual stresses or compressive residual stresses were detected in the printed walls. These residual stress states help to improve printed product properties such as fatigue strength and corrosion resistance. However, the thermal and mechanical properties of WAAM printed LTT martensite steel walls are largely unknown. In this work, a printed LTT martensite steel was characterized for its thermal, metallurgical, and mechanical behavior at room and elevated temperatures. The temperature-dependent specific heat capacity, thermal expansion, atomic lattice spacing, and tensile properties were measured during both heating and cooling and related to observed microstructural features and computational thermodynamics predictions. These results revealed a large hysteresis in the martensitic transformation, with a martensite start temperature of 240 °C and austenite start temperature of 680 °C. Additional thermal cycles and specimen orientation did not affect the printed specimen austenite and martensite transformations. However, it was observed that the printed metal may exhibit tempering embrittlement at about 350 °C but further studies are needed to confirm that. These results suggest that a temperature control of 250 °C to 350 °C during WAAM is needed to maximize the stress reduction potential of the LTT250 martensite steel. Opportunities for future implementation of LTT martensite steels and optimization of additive manufacturing process conditions are identified.