Skip to main content
TEDB

It’s been referenced in Popular Science and Newsweek, cited in the Economic Report of the President, and used by agencies to create countless federal regulations.

Oak Ridge National Laboratory researchers used an invertible neural network, a type of artificial intelligence that mimics the human brain, to select the most suitable materials for desired properties, such as flexibility or heat resistance, with high chemical accuracy. The study could lead to more customizable materials design for industry.

A study led by researchers at ORNL could help make materials design as customizable as point-and-click.

Earth Day

Tackling the climate crisis and achieving an equitable clean energy future are among the biggest challenges of our time. 

Andrew Sutton joined ORNL in 2020 to guide a newly formed team that focuses on chemical process scale-up in advanced manufacturing. Credit: ORNL, U.S. Dept. of Energy

When Andrew Sutton arrived at ORNL in late 2020, he knew the move would be significant in more ways than just a change in location.

ORNL scientists created a new microbial trait mapping process that improves on classical protoplast fusion techniques to identify the genes that trigger desirable genetic traits like improved biomass processing. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy. Reprinted with the permission of Oxford University Press, publisher of Nucleic Acids Research

ORNL scientists had a problem mapping the genomes of bacteria to better understand the origins of their physical traits and improve their function for bioenergy production.

David McCollum is bringing his interdisciplinary expertise in engineering, economics and policy to several initiatives at Oak Ridge National Laboratory in the global effort to transform energy systems equitably while respecting planetary boundaries. Credit: Lindsay McCollum

David McCollum is using his interdisciplinary expertise, international networks and boundless enthusiasm to lead Oak Ridge National Laboratory’s contributions to the Net Zero World initiative.

Scientists with the Center for Bioenergy Innovation at ORNL highlighted a hybrid approach that uses microbes and catalysis to convert cellulosic biomass into fuels suitable for aviation and other difficult-to-electrify sectors. Credit: ORNL, U.S. Dept. of Energy

The rapid pace of global climate change has added urgency to developing technologies that reduce the carbon footprint of transportation technologies, especially in sectors that are difficult to electrify.

Melissa Cregger

The Center for Bioenergy Innovation at ORNL offers a unique opportunity for early career scientists to conduct groundbreaking research while learning what it takes to manage a large collaborative science center.

This image illustrates lattice distortion, strain, and ion distribution in metal halide perovskites, which can be induced by external stimuli such as light and heat. Image credit: Stephen Jesse/ORNL

A study by researchers at the ORNL takes a fresh look at what could become the first step toward a new generation of solar batteries.

Bryan Piatkowski is a Liane Russell Distinguished Fellow at ORNL developing a framework to better understand the genetic underpinnings of desirable plant traits so they may be used to create climate-resilient crops for food, bioenergy and carbon sequestration. Credit: Carlos Jones/ORNL, U.S. Dept of Energy.

Bryan Piatkowski, a Liane Russell Distinguished Fellow in the Biosciences Division at ORNL, is exploring the genetic pathways for traits such as stress tolerance in several plant species important for carbon sequestration