Skip to main content
ORNL’s Melissa Allen-Dumas examines the ways global and regional climate models can shed light on local climate effects and inform equitable solutions. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The world is full of “huge, gnarly problems,” as ORNL research scientist and musician Melissa Allen-Dumas puts it — no matter what line of work you’re in. That was certainly the case when she would wrestle with a tough piece of music.

Burak Ozpineci is a globally recognized leader in power electronics research. He was named an ORNL Corporate Fellow in fall 2021. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Burak Ozpineci started out at ORNL working on a novel project: introducing silicon carbide into power electronics for more efficient electric vehicles. Twenty years later, the car he drives contains those same components.

ORNL’s Larry York studies how plant root traits contribute to crop productivity. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Biologist Larry York’s fascination with plant roots has spurred his research across four continents and inspired him to create accessible tools that enable others to explore the underground world.

U.S. Secretary of Energy Granholm tours ORNL’s world-class science facilities

Energy Secretary Jennifer Granholm visited ORNL on Nov. 22 for a two-hour tour, meeting top scientists and engineers as they highlighted projects and world-leading capabilities that address some of the country’s most complex research and technical challenges. 

A material’s spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness, such as the QFI calculation pictured, causes the neutrons to form a kind of quantum gauge. This gauge allows the researchers to distinguish between classical and quantum spin fluctuations. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

Carrie Eckert

Carrie Eckert applies her skills as a synthetic biologist at ORNL to turn microorganisms into tiny factories that produce a variety of valuable fuels, chemicals and materials for the growing bioeconomy.

A traffic-camera view of Shallowford Road, one of the more than 350 intersections in Chattanooga studied by Oak Ridge National Laboratory researchers.

The daily traffic congestion along the streets and interstate lanes of Chattanooga could be headed the way of the horse and buggy with help from ORNL researchers.

Summer Widner, Stephanie Timbs, James Gaugler and James Avenell of ORNL are part of a team that processes thorium-228, a byproduct of actinium-227. As new uses for thorium are realized, particularly in medicine, the lab expects the demand for the radioisotope to grow.

As a medical isotope, thorium-228 has a lot of potential — and Oak Ridge National Laboratory produces a lot.

ORNL metabolic engineer Adam Guss develops genetic tools to modify microbes that can perform a range of processes needed to create sustainable biofuels and bioproducts. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As a metabolic engineer at Oak Ridge National Laboratory, Adam Guss modifies microbes to perform the diverse processes needed to make sustainable biofuels and bioproducts.

This spring, Brood X cicadas emerged from the ground after 17 years burrowed and swarmed across the eastern United States, leaving a trail of exoskeletons and echoes of mating calls. Cicadas emerge in such large quantities to withstand predation and successfully maintain their populations, and trees actually play a key role in their life cycle. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

On the road leading to Oak Ridge National Laboratory, drivers may notice that many of the green trees lining the entrance to the lab are dappled with brown leaves. Just weeks past the summer solstice, this phenomenon is out of place and is in fact evidence of another natural occurrence: cicada “flagging.”