Skip to main content
ORNL’s Marcel Demarteau inspects experiments along Neutrino Alley at the Spallation Neutron Source, which makes neutrinos as a byproduct. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Marcel Demarteau is director of the Physics Division at the Department of Energy’s Oak Ridge National Laboratory. For topics from nuclear structure to astrophysics, he shapes ORNL’s physics research agenda.

A Co-Optima research team led by Oak Ridge National Laboratory’s Jim Szybist in collaboration with Argonne, Sandia and the National Renewable Energy Laboratory, created a merit function tool that evaluates six fuel properties and their impact on engine performance, giving the scientific community a guide to quickly evaluate biofuels. Credit: ORNL/U.S. Dept. of Energy

As ORNL’s fuel properties technical lead for the U.S. Department of Energy’s Co-Optimization of Fuel and Engines, or Co-Optima, initiative, Jim Szybist has been on a quest for the past few years to identify the most significant indicators for predicting how a fuel will perform in engines designed for light-duty vehicles such as passenger cars and pickup trucks.

UTK researchers used neutron probes at ORNL to confirm established fundamental chemical rules can also help understand and predict atomic movements and distortions in materials when disorder is introduced, as arrows show. Credit: Eric O’Quinn/UTK

Pauling’s Rules is the standard model used to describe atomic arrangements in ordered materials. Neutron scattering experiments at Oak Ridge National Laboratory confirmed this approach can also be used to describe highly disordered materials.

Schematic showing cholesterol stiffening DOPC membranes, making them flatter and thicker. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Neutron scattering at ORNL has shown that cholesterol stiffens simple lipid membranes, a finding that may help us better understand the functioning of human cells.

Paul Abraham uses mass spectrometry to study proteins.

Systems biologist Paul Abraham uses his fascination with proteins, the molecular machines of nature, to explore new ways to engineer more productive ecosystems and hardier bioenergy crops.

A structural model of HgcA, shown in cyan, and HgcB, shown in purple, were created using metagenomic techniques to better understand the transformation of mercury into its toxic form, methylmercury. Photo credit: Connor Cooper/ORNL, U.S. Dept of Energy

A team led by ORNL created a computational model of the proteins responsible for the transformation of mercury to toxic methylmercury, marking a step forward in understanding how the reaction occurs and how mercury cycles through the environment.

Unique imaging capabilities yield new knowledge, growth for bioeconomy

Scientists at the Department of Energy’s Oak Ridge National Laboratory have a powerful new tool in the quest to produce better plants for biofuels, bioproducts and agriculture.

Enzyme activity during organophosphate poisoning

Pick your poison. It can be deadly for good reasons such as protecting crops from harmful insects or fighting parasite infection as medicine — or for evil as a weapon for bioterrorism. Or, in extremely diluted amounts, it can be used to enhance beauty.

SPRUCE experiment

Oak Ridge National Laboratory scientists evaluating northern peatland responses to environmental change recorded extraordinary fine-root growth with increasing temperatures, indicating that this previously hidden belowground mechanism may play an important role in how carbon-rich peatlands respond to warming.

four circle diffractometer

A UCLA-led team that discovered the first intrinsic ferromagnetic topological insulator – a quantum material that could revolutionize next-generation electronics – used neutrons at Oak Ridge National Laboratory to help verify their finding.