Skip to main content
Jason Nattress, an Alvin M. Weinberg Fellow, is developing new nuclear material inspection and identification techniques to improve scanning times for ocean-going cargo containers.

Jason Nattress, an Alvin M. Weinberg Fellow at the Department of Energy’s Oak Ridge National Laboratory, found his calling on a nuclear submarine.

Cropped INFUSE logo

The U.S. Department of Energy announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

Snapshot of total temperature distribution at supersonic speed of mach 2.4. Total temperature allows the team to visualize the extent of the exhaust plumes as the temperature of the plumes is much greater than that of the surrounding atmosphere. Credit: NASA

The type of vehicle that will carry people to the Red Planet is shaping up to be “like a two-story house you’re trying to land on another planet. 

Neutrons—Insight into human tissue

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source and High Flux Isotope Reactor to better understand how certain cells in human tissue bond together.

The configurational ensemble (a collection of 3D structures) of an intrinsically disordered protein, the N-terminal of c-Src kinase, which is a major signaling protein in humans. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy.

Using the Titan supercomputer and the Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory, scientists have created the most accurate 3D model yet of an intrinsically disordered protein, revealing the ensemble of its atomic-level structures.

Lighting up liquid crystals

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source to probe the structure of a colorful new material that may pave the way for improved sensors and vivid displays.

Tyler Gerczak, a materials scientist at Oak Ridge National Laboratory, is focused on post-irradiation examination and separate effects testing of current fuels for light water reactors and advanced fuel types that could be used in future nuclear systems. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Ask Tyler Gerczak to find a negative in working at the Department of Energy’s Oak Ridge National Laboratory, and his only complaint is the summer weather. It is not as forgiving as the summers in Pulaski, Wisconsin, his hometown.

Weiju Ren’s knowledgebase is making the nuclear world safer. Called DOE’s Gen IV Materials Handbook, it manages data about structural materials for the Very High Temperature Reactor. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Six new nuclear reactor technologies are set to deploy for commercial use between 2030 and 2040. Called Generation IV nuclear reactors, they will operate with improved performance at dramatically higher temperatures than today’s reactors.

Isabelle Snyder standing in front of screen dislaying national map of US power grids

Isabelle Snyder calls faults as she sees them, whether it’s modeling operations for the nation’s power grid or officiating at the US Open Tennis Championships.