Skip to main content
Oak Ridge National Laboratory materials scientist Zhili Feng, left, looks on as senior technician Doug Kyle operates a welding robot inside a robotic welding cell. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The U.S. Departments of Energy and Defense teamed up to create a series of weld filler materials that could dramatically improve high-strength steel repair in vehicles, bridges and pipelines.

From left to right, Cortney Piper, executive director of the Tennessee Advanced Energy Business Council; Susan Hubbard, ORNL deputy for science and technology; Dan Miller, innovation Crossroads program lead; and Mike Paulus, ORNL director of technology transfer, attend the Innovation Crossroads Showcase at the Knoxville Chamber on Sept. 22. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A crowd of investors and supporters turned out for last week’s Innovation Crossroads Showcase at the Knoxville Chamber as part of Innov865 Week. Sponsored by ORNL and the Tennessee Advanced Energy Business Council, the event celebrated deep-tech entrepreneurs and the Oak Ridge Corridor as a growing energy innovation hub for the nation.

Researchers at Oak Ridge National Laboratory designed an adsorbent material to rapidly remove toxic chromium and arsenic simultaneously from water resources. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are tackling a global water challenge with a unique material designed to target not one, but two toxic, heavy metal pollutants for simultaneous removal.

ORNL mechanical engineer Marm Dixit focuses his research on solid-state batteries and their potential use in electric vehicles. Credit: ORNL, U.S. Dept. of Energy

Mechanical engineer Marm Dixit’s work is all about getting electricity to flow efficiently from one end of a solid-state battery to the other. It’s a high-stakes problem

Oak Ridge National Laboratory’s Mitch Allmond works with the Facility for Rare Isotope Beams Decay Station initiator, which combined diverse detectors for FRIB’s first experiment. Credit: Robert Grzywacz/ORNL, U.S. Dept. of Energy

Two decades in the making, a new flagship facility for nuclear physics opened on May 2, and scientists from the Department of Energy’s Oak Ridge National Laboratory have a hand in 10 of its first 34 experiments.

Burak Ozpineci is a globally recognized leader in power electronics research. He was named an ORNL Corporate Fellow in fall 2021. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Burak Ozpineci started out at ORNL working on a novel project: introducing silicon carbide into power electronics for more efficient electric vehicles. Twenty years later, the car he drives contains those same components.

Erdem Asa is leveraging his power electronics expertise to adapt ORNL’s wireless charging technology to unmanned aerial vehicles. Credit: Erdem Asa/ORNL, U.S. Dept. of Energy

Having co-developed the power electronics behind ORNL’s compact, high-level wireless power technology for automobiles, Erdem Asa is looking to the skies to apply the same breakthrough to aviation.

Hope Corsair. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

When Hope Corsair’s new colleagues at Oak Ridge National Laboratory ask her about her area of expertise, she tells them it’s “context.” Her goal as an energy economist is to make sure ORNL’s breakthroughs have the widest possible

L-R: ORNL’s Omer Onar and Veda Galigekere with the dynamic wireless charging test bed at ORNL’s Grid Research Integration and Deployment Center. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

Consumer buy-in is key to the future of a decarbonized transportation sector in which electric vehicles largely replace today’s conventionally fueled cars and trucks.

Jianlin Li, leader of the Energy Storage and Conversion Manufacturing Group, directs the development of advanced manufacturing schemes and pilot-scale devices into emerging energy storage and conversion research. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In his career focused on energy storage science, Jianlin Li has learned that discovering new ways to process and assemble batteries is just as important as the development of new materials.