Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Beth L Armstrong
- Robert Sacci
- Sam Hollifield
- Tomonori Saito
- Chad Steed
- Ethan Self
- Jaswinder Sharma
- Junghoon Chae
- Mingyan Li
- Sergiy Kalnaus
- Travis Humble
- Aaron Werth
- Alexandra Moy
- Alexey Serov
- Ali Passian
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Weber
- Chanho Kim
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Jun Yang
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Oscar Martinez
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Varisara Tansakul
- Vera Bocharova
- Xiang Lyu
- Yarom Polsky

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

Current battery materials such as silicon suffer from poor ion and electron transport due to non-optimal wiring. This invention facilitates particle interconnectedness to facilitate ion motion and electron transport overcoming poor assembly.

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

Separation of rare earth containing ores is often approached via froth floatation; however, for successful flotation, ligands must be designed that can both bind to the mineral interface while being amphiphilic enough to drag the minerals to an air-aqueous interface.

Adhesives for metal parts typically are liquid-based which require complex processing. This technology is a hot melt adhesive that is mixed and applied in a solid form and after the heating and cooling cycle creates strong bonds with the substrates in a matter of seconds.

Modern automobiles are operated by small computers that communicate critical information via a broadcast-based network architecture called controller area network (CAN).

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.