Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Sam Hollifield
- Tomonori Saito
- Chad Steed
- Ethan Self
- Jaswinder Sharma
- Junghoon Chae
- Mingyan Li
- Robert Sacci
- Sergiy Kalnaus
- Travis Humble
- Aaron Werth
- Alexey Serov
- Ali Passian
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Brian Weber
- Chanho Kim
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Jun Yang
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Oscar Martinez
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Varisara Tansakul
- Vera Bocharova
- Xiang Lyu
- Yarom Polsky

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

Current battery materials such as silicon suffer from poor ion and electron transport due to non-optimal wiring. This invention facilitates particle interconnectedness to facilitate ion motion and electron transport overcoming poor assembly.

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

Adhesives for metal parts typically are liquid-based which require complex processing. This technology is a hot melt adhesive that is mixed and applied in a solid form and after the heating and cooling cycle creates strong bonds with the substrates in a matter of seconds.

Modern automobiles are operated by small computers that communicate critical information via a broadcast-based network architecture called controller area network (CAN).

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.