Skip to main content
SHARE
Publication

Exploiting chitosan to improve the interface of nanocellulose reinforced polymer composites

Publication Type
Journal
Journal Name
Cellulose
Publication Date
Page Numbers
3859 to 3870
Volume
29
Issue
7

Cellulose nanofibrils (CNFs) have been widely used as a nanofiller for polymer composite reinforcement due to their excellent mechanical properties. However, CNF is produced in water and needs to be dried prior to use in composite materials. The presence of hydroxyl groups on the surface of CNF creates strong hydrogen bonding that makes it difficult and costly to dry. Additionally, the hydrophilicity at the fiber surface results in agglomeration of CNFs within many polymer matrices. In this study, chitosan (CS) was co-precipitated with CNF to produce a dual-bonding filler for use in poly (lactic acid) (PLA) composites. CS promotes improved interfacial interaction within the polymer matrix by forming strong hydrogen bonds with the CNF and potential covalent bonds with the PLA. The results confirmed that the addition of a small amount of CS significantly improved the mechanical properties compared to PLA + CNF composites and neat PLA. The detailed study of the PLA + CNF/CS composites reveals the synergetic effect of the hydrogen and covalent bonding mechanism for PLA reinforcement.