For his role in conceiving, designing, and implementing novel geocomputational methods to help solve a wide variety of national and global problems in energy, the environment, and national security.
For pioneering studies of the functionality of mesoporous oxides and carbons for real-world applications, ionic liquids for chemical separation and materials synthesis, and catalysis by nanomaterials.
For his pioneering research in atom probe field-ion microscopy and atom probe tomography, most recently to understand the unprecedented properties and behaviors of nanostructured ferritic steels.
For far-reaching accomplishments on national security issues relating to nuclear weapons proliferation, security of nuclear materials, and counterterrorism.
For his internationally recognized accomplishments in high-energy physics, radiation transport, and detector and neutron target research and development.
For significant contributions and leadership in the processing and properties of materials, particularly intermetallic alloys, which have led to his reputation as one of the world's leading scientists in these areas.
For distinguished research on the air/surface exchange of atmospheric trace gases and particles and their interactions with the Earth's biogeochemical cycles, and for pioneering developments in atmospheric sampling methodologies with special emphasis on the global mercury cycle.
For contributions to advanced control systems for nuclear reactor, including development of control-system and plant protection technologies that permit automated start-up and operation; and to analysis techniques that have led to better understanding of reactor dynamics.
For contributions to understanding plasma turbulence and the nonlinear properties of magnetohydrodynamic instabilities, especially their role in explaining the behavior of magnetically confined plasmas, and for development of new magnetic confinement concepts that overcome these limitations.