Skip to main content
ORNL metabolic engineer Adam Guss develops genetic tools to modify microbes that can perform a range of processes needed to create sustainable biofuels and bioproducts. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As a metabolic engineer at Oak Ridge National Laboratory, Adam Guss modifies microbes to perform the diverse processes needed to make sustainable biofuels and bioproducts.

ORNL’s Josh Michener, a microbiologist and metabolic engineer, led the discovery of a useful new enzyme that breaks down stubborn bonds in lignin, a polymer found in plants that typically becomes waste during bioconversion. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In a step toward increasing the cost-effectiveness of renewable biofuels and bioproducts, scientists at ORNL discovered a microbial enzyme that degrades tough-to-break bonds in lignin, a waste product of biorefineries.

Aviation contributes about 2.5% of global carbon dioxide emissions. To greatly reduce its emissions, the U.S. commercial aviation sector needs new methods of making sustainable aviation fuel. Credit: Ross Parmly/Unsplash 

ORNL’s Zhenglong Li led a team tasked with improving the current technique for converting ethanol to C3+ olefins and demonstrated a unique composite catalyst that upends current practice and drives down costs. The research was published in ACS Catalysis.

A research team led by ORNL’s Xiaohan Yang used a gene from agave to engineer higher yield, improved stress tolerance and greater carbon sequestration in tobacco plants. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL have discovered a single gene that simultaneously boosts plant growth and tolerance for stresses such as drought and salt, all while tackling the root cause of climate change by enabling plants to pull more carbon dioxide from the atmosphere.

Scientists genetically engineered bacteria for itaconic acid production, creating dynamic controls that separate microbial growth and production phases for increased efficiency and acid yield. Credit: NREL

A research team led by Oak Ridge National Laboratory bioengineered a microbe to efficiently turn waste into itaconic acid, an industrial chemical used in plastics and paints.

ORNL ecosystem scientist Colleen Iversen talked to fourth-grade students at Coulter Grove Intermediate School in Maryville on Friday, April 23, as part of National Environmental Education Week.

Esther Parish is one of eight scientists from the Department of Energy's Oak Ridge National Laboratory talking to students in nine schools across East Tennessee as part of National Environmental Education Week, or EE Week.

A Co-Optima research team led by Oak Ridge National Laboratory’s Jim Szybist in collaboration with Argonne, Sandia and the National Renewable Energy Laboratory, created a merit function tool that evaluates six fuel properties and their impact on engine performance, giving the scientific community a guide to quickly evaluate biofuels. Credit: ORNL/U.S. Dept. of Energy

As ORNL’s fuel properties technical lead for the U.S. Department of Energy’s Co-Optimization of Fuel and Engines, or Co-Optima, initiative, Jim Szybist has been on a quest for the past few years to identify the most significant indicators for predicting how a fuel will perform in engines designed for light-duty vehicles such as passenger cars and pickup trucks.

stacked poplar logs

Popular wisdom holds tall, fast-growing trees are best for biomass, but new research by two U.S. Department of Energy national laboratories reveals that is only part of the equation.

An interactive visualization shows potential progression of BECCS to address carbon dioxide reduction goals. Credit: ORNL, U.S. Dept. of Energy

The combination of bioenergy with carbon capture and storage could cost-effectively sequester hundreds of millions of metric tons per year of carbon dioxide in the United States, making it a competitive solution for carbon management, according to a new analysis by ORNL scientists.

Zhenglong Li, an ORNL scientist in the Energy and Transportation Science Division, holds a sample of a catalyst material used to covert ethanol into butene-rich mixed olefins, important intermediates that can then be readily processed into aviation fuels. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Prometheus Fuels has licensed an ethanol-to-jet-fuel conversion process developed by researchers at Oak Ridge National Laboratory. The ORNL technology will enable cost-competitive production of jet fuel and co-production of butadiene for use in renewable polymer synthesis.