Skip to main content
Brian Fricke, equipment research group lead at ORNL, works with Anthony Gehl at the Building Technologies Research and Integration Center on a new prototype installation. Collaboration with fellow researchers across the building technologies area strengthens his group’s capabilities. Credit: ORNL, U.S. Dept. of Energy

When Brian Fricke walks into a supermarket, evidence of his scientific achievement is all around in the refrigerated cases housing the fresh fruits and vegetables. As an Oak Ridge National Laboratory building equipment researcher, Fricke has a long history of making sure that produce is kept fresh in an energy efficient and environmentally sound manner.

ORNL’s Christine Walker, a technical consultant and researcher in the Integrated Building Performance Group, works with the nation’s federally owned buildings through the Federal Energy Management Program, helping to reduce their carbon footprint and improve their energy performance. Credit: ORNL/U.S. Dept. of Energy

She may not wear a white coat or carry a stethoscope, but Christine Walker of ORNL spends her days diagnosing the energy health of buildings and figuring out how to improve their efficiency to achieve cost savings and reduce their carbon footprint.

As the leader of ORNL’s Biodiversity and Ecosystem Health Group, environmental scientist Teresa Mathews works to understand the impacts of energy generation on water and solve challenging problems, including mercury pollution. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Moving to landlocked Tennessee isn’t an obvious choice for most scientists with new doctorate degrees in coastal oceanography.

ORNL’s Jason DeGraw, a mechanical engineer and indoor air quality expert, uses numerical equations powered by high-performance computing to analyze and solve problems related to the dispersion patterns of biological pathogens as well as chemical irritants in buildings. Credit: ORNL, U.S. Dept. of Energy

Long before COVID-19’s rapid transmission led to a worldwide pandemic, Oak Ridge National Laboratory’s Jason DeGraw was performing computer modeling to better understand the impact of virus-laden droplets on indoor air quality

Belinda Akpa applies her diverse expertise and high-performance computing to accelerate the drug discovery process and increase the chances of success when candidate molecules go to clinical trials. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Belinda Akpa is a chemical engineer with a talent for tackling big challenges and fostering inclusivity and diversity in the next generation of scientists.

Rich Giannone uses bioanalytical mass spectrometry to examine proteins, the primary driver in biological systems.

Rich Giannone uses bioanalytical mass spectrometry to examine proteins, the primary driver in biological systems.

Kashif Nawaz, researcher and group leader for multifunctional equipment integration in buildings technologies, is developing a platform for the direct air capture of carbon dioxide that can be retrofitted to existing rooftop heating, ventilation and air conditioning units.  Credit: ORNL/U.S. Dept. of Energy

When Kashif Nawaz looks at a satellite map of the U.S., he sees millions of buildings that could hold a potential solution for the capture of carbon dioxide, a plentiful gas that can be harmful when excessive amounts are released into the atmosphere, raising the Earth’s temperature.

Associate Laboratory Director Kathy McCarthy heads the ORNL directorate that manages proto-MPEX, a linear plasma device that informs the development of the MPEX tool for study of fusion materials. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

From the helm of a one-of-a-kind organization that brings nuclear fusion and fission expertise together to pave the way to expanding carbon-free energy, Kathy McCarthy can trace the first step of her engineering career back to

Chuck Kessel

Chuck Kessel was still in high school when he saw a scientist hold up a tiny vial of water and say, “This could fuel a house for a whole year.”

Sandra Davern performs cell based assays to evaluate cell death and DNA damage in response to radiation in order to gain a better understanding of how radioisotope nanoparticles affect the human body.

When Sandra Davern looks to the future, she sees individualized isotopes sent into the body with a specific target: cancer cells.