Skip to main content

News

Edmon Begoli

Artificial intelligence (AI) techniques have the potential to support medical decision-making, from diagnosing diseases to prescribing treatments. But to prioritize patient safety, researchers and practitioners must first ensure such methods are accurate.

International Conference on Neuromorphic Systems (ICONS)

Materials scientists, electrical engineers, computer scientists, and other members of the neuromorphic computing community from industry, academia, and government agencies gathered in downtown Knoxville July 23–25 to talk about what comes next in

Samples of 70% dark chocolate prepared for study with the USANS instrument at the Spallation Neutron Source. (Credit: ORNL/Genevieve Martin)

Tempering, the heating process that gives chocolate its appealing sheen and creamy texture, is a crucial part of crafting quality chocolate. But, at the molecular level, it gets a little tricky, and when done incorrectly, can render entire batches of chocolate gritty and unappetizing.

ORNL collaborator Hsiu-Wen Wang led the neutron scattering experiments at the Spallation Neutron Source to probe complex electrolyte solutions that challenge nuclear waste processing at Hanford and other sites. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Researchers at the Department of Energy’s Oak Ridge National Laboratory, Pacific Northwest National Laboratory and Washington State University teamed up to investigate the complex dynamics of low-water liquids that challenge nuclear waste processing at federal cleanup sites.

Molecular dynamics simulations of the Fs-peptide revealed the presence of at least eight distinct intermediate stages during the process of protein folding. The image depicts a fully folded helix (1), various transitional forms (2–8), and one misfolded state (9). By studying these protein folding pathways, scientists hope to identify underlying factors that affect human health.

Using artificial neural networks designed to emulate the inner workings of the human brain, deep-learning algorithms deftly peruse and analyze large quantities of data. Applying this technique to science problems can help unearth historically elusive solutions.

ORNL researchers Gaute Hagen, Masaaki Matsuda, and Parans Paranthaman has been elected fellow of the American Physical Society.

Three researchers from the Department of Energy’s Oak Ridge National Laboratory have been elected fellows of the American Physical Society (APS). Fellows of the APS are recognized for their exceptional contributions to the physics enterprise in outstanding resear...

A conceptual illustration of proton-proton fusion in which two protons fuse to form a deuteron. Image courtesy of William Detmold.

Nuclear physicists are using the nation’s most powerful supercomputer, Titan, at the Oak Ridge Leadership Computing Facility to study particle interactions important to energy production in the Sun and stars and to propel the search for new physics discoveries Direct calculatio...

The interior of the Massachusetts Institute of Technology’s (MIT’s) Alcator C-Mod tokamak. A team led by Princeton Plasma Physics Laboratory’s C.S. Chang recently used the Titan supercomputer

The same fusion reactions that power the sun also occur inside a tokamak, a device that uses magnetic fields to confine and control plasmas of 100-plus million degrees. Under extreme temperatures and pressure, hydrogen atoms can fuse together, creating new helium atoms and simulta...