Skip to main content
Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers. Credit: ORNL, U.S. Dept. of Energy

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

Biopsy from the tubular esophagus showing incomplete intestinal metaplasia, goblet cells with interposed cells having gastric foveolar-type mucin consistent with Barrett esophagus. Negative for dysplasia. H&E stain. Credit: Creative Commons

A team including researchers from the Department of Energy’s Oak Ridge National Laboratory has developed a digital tool to better monitor a condition known as Barrett’s esophagus, which affects more than 3 million people in the United States.

A material’s spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness, such as the QFI calculation pictured, causes the neutrons to form a kind of quantum gauge. This gauge allows the researchers to distinguish between classical and quantum spin fluctuations. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

ORNL researchers used neutrons at the lab’s Spallation Neutron Source to analyze modified high-entropy metal alloys with enhanced strength and ductility, or the ability to stretch, under high-stress without failing. Credit: Rui Feng/ORNL, U.S. Dept. of Energy
Researchers at Oak Ridge National Laboratory have developed a method of adding nanostructures to high-entropy metal alloys, or HEAs, that enhance both strength and ductility, which is the ability to deform or stretch
From left to right are Beth Armstrong, Govindarajan Muralidharan and Andrew Payzant.

ASM International recently elected three researchers from ORNL as 2021 fellows. Selected were Beth Armstrong and Govindarajan Muralidharan, both from ORNL’s Material Sciences and Technology Division, and Andrew Payzant from the Neutron Scattering Division.

Researchers studying secondary metabolites in the fungus Aspergillus flavus, pictured, found unique mixes of metabolites corresponding to genetically distinct populations. The finding suggests local environmental conditions play a key role in secondary metabolite production, influencing the discovery of drugs and other useful compounds. Credit: Tomás Allen Rush/ORNL, U.S. Dept. of Energy.

Scientists at ORNL and the University of Wisconsin–Madison have discovered that genetically distinct populations within the same species of fungi can produce unique mixes of secondary metabolites, which are organic compounds with applications in

From top to bottom respectively, alloys were made without nanoprecipitates or with coarse or fine nanoprecipitates to assess effects of their sizes and spacings on mechanical behavior. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Scientists at ORNL and the University of Tennessee, Knoxville, have found a way to simultaneously increase the strength and ductility of an alloy by introducing tiny precipitates into its matrix and tuning their size and spacing.

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus.

Peter Thornton, right, works with Robertsville Middle School students to assemble the RamSat. Credit: Ian Goethert/ORNL, U.S. Dept. of Energy

RamSat’s mission is to take pictures of the forests around Gatlinburg, which were destroyed by wildfire in 2016. The mission is wholly designed and carried out by students, teachers and mentors, with support from numerous organizations, including Oak Ridge National Laboratory.

ORNL and NASA’s Jet Propulsion Laboratory scientists studied the formation of amorphous ice like the exotic ice found in interstellar space and on Jupiter’s moon, Europa. Credit: NASA/JPL-Caltech

Researchers from NASA’s Jet Propulsion Laboratory and Oak Ridge National Laboratory successfully created amorphous ice, similar to ice in interstellar space and on icy worlds in our solar system. They documented that its disordered atomic behavior is unlike any ice on Earth.