Skip to main content
At the U.S. Department of Energy Manufacturing Demonstration Facility at ORNL, this part for a scaled-down prototype of a reactor was produced for industry partner Kairos Power.

Scientists at the Department of Energy Manufacturing Demonstration Facility at ORNL have their eyes on the prize: the Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new approaches that will be up and running by 2023.

Recent research involving Oak Ridge National Laboratory’s Spallation Neutron Source demonstrates crystal-like heat conduction in a solid-liquid hybrid, AgCrSe2.

Research by an international team led by Duke University and the Department of Energy’s Oak Ridge National Laboratory scientists could speed the way to safer rechargeable batteries for consumer electronics such as laptops and cellphones.

Batteries - The 3D connection

Oak Ridge National Laboratory researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.

Prospecting for deformations in exotic isotopes of ruthenium and molybdenum, Allmond found they displayed a deflated-football morphology. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the Physics Division of the Department of Energy’s Oak Ridge National Laboratory, James (“Mitch”) Allmond conducts experiments and uses theoretical models to advance our understanding of the structure of atomic nuclei, which are made of various combinations of protons and neutrons (nucleons).

Coronavirus graphic

In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s Oak Ridge National Laboratory are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron science.

Materials — Molding molecular matter

Scientists at Oak Ridge National Laboratory used a focused beam of electrons to stitch platinum-silicon molecules into graphene, marking the first deliberate insertion of artificial molecules into a graphene host matrix.

Oak Ridge National Laboratory’s Ramesh Bhave co-invented a process to recover high-purity rare earth elements from scrapped magnets of computer hard drives (shown here) and other post-consumer wastes. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Three technologies and one commercialization program developed at the Department of Energy’s Oak Ridge National Laboratory have won National Technology Transfer Awards from the Federal Laboratory Consortium.

Joe Paddison a Eugene P. Wigner Fellow, studies how statistical sampling methods can be coupled with neutron scattering experiments of magnetic and other new materials to provide richer information. Image credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Department of Energy.

Joe Paddison, a Eugene P. Wigner Fellow at the Department of Energy’s Oak Ridge National Laboratory, believes there’s more information to be found in neutron scattering data than scientists like himself might expect.

Polymer self-assembly at the liquid-liquid interface in real time

OAK RIDGE, Tenn., Feb. 27, 2020 — Researchers at Oak Ridge National Laboratory and the University of Tennessee achieved a rare look at the inner workings of polymer self-assembly at an oil-water interface to advance materials for neuromorphic computing and bio-inspired technologies.

To understand the electronic structures of solids and predict their properties, ORNL’s Valentino Cooper uses density functional theory (DFT), which models how many electrons are in a region rather than where those electrons are. “DFT essentially presents one electron existing in a ‘sea foam’ and tells how dense that foam is,” he said. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Valentino (“Tino”) Cooper of the Department of Energy’s Oak Ridge National Laboratory uses theory, modeling and computation to improve fundamental understanding of advanced materials for next-generation energy and information technologies.