Skip to main content
A Co-Optima research team led by Oak Ridge National Laboratory’s Jim Szybist in collaboration with Argonne, Sandia and the National Renewable Energy Laboratory, created a merit function tool that evaluates six fuel properties and their impact on engine performance, giving the scientific community a guide to quickly evaluate biofuels. Credit: ORNL/U.S. Dept. of Energy

As ORNL’s fuel properties technical lead for the U.S. Department of Energy’s Co-Optimization of Fuel and Engines, or Co-Optima, initiative, Jim Szybist has been on a quest for the past few years to identify the most significant indicators for predicting how a fuel will perform in engines designed for light-duty vehicles such as passenger cars and pickup trucks.

These fuel assembly brackets, manufactured by ORNL in partnership with Framatome and Tennessee Valley Authority, are the first 3D-printed safety-related components to be inserted into a nuclear power plant. Credit: Fred List/ORNL, U.S. Dept. of Energy

The Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new advanced technologies, could be operational by 2024.

Jianlin Li employs ORNL’s world-class battery research facility to validate the innovative safety technology. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Soteria Battery Innovation Group has exclusively licensed and optioned a technology developed by Oak Ridge National Laboratory designed to eliminate thermal runaway in lithium ion batteries due to mechanical damage.

A selfie from the Curiosity rover as it explores the surface of Mars. Like many spacecraft, Curiosity uses a radioisotope power system to help fuel its mission. Credit: NASA/JPL-Caltech/MSSS

Radioactive isotopes power some of NASA’s best-known spacecraft. But predicting how radiation emitted from these isotopes might affect nearby materials is tricky

This photo shows the interior of the vessel of the General Atomics DIII-D National Fusion Facility in San Diego, where ORNL researchers are testing the suitability of tungsten to armor the inside of a fusion device. Credit: General Atomics

The inside of future nuclear fusion energy reactors will be among the harshest environments ever produced on Earth. What’s strong enough to protect the inside of a fusion reactor from plasma-produced heat fluxes akin to space shuttles reentering Earth’s atmosphere?

3D-printed 316L steel has been irradiated along with traditionally wrought steel samples. Researchers are comparing how they perform at various temperatures and varying doses of radiation. Credit: Jaimee Janiga/ORNL

It’s a new type of nuclear reactor core. And the materials that will make it up are novel — products of Oak Ridge National Laboratory’s advanced materials and manufacturing technologies.

A structural model of HgcA, shown in cyan, and HgcB, shown in purple, were created using metagenomic techniques to better understand the transformation of mercury into its toxic form, methylmercury. Photo credit: Connor Cooper/ORNL, U.S. Dept of Energy

A team led by ORNL created a computational model of the proteins responsible for the transformation of mercury to toxic methylmercury, marking a step forward in understanding how the reaction occurs and how mercury cycles through the environment.

VERA’s tools allow a virtual window inside the reactor core, down to a molecular level.

As CASL ends and transitions to VERA Users Group, ORNL looks at the history of the program and its impact on the nuclear industry.

Unique imaging capabilities yield new knowledge, growth for bioeconomy

Scientists at the Department of Energy’s Oak Ridge National Laboratory have a powerful new tool in the quest to produce better plants for biofuels, bioproducts and agriculture.

Joe Hagerman is expanding connected neighborhood research at ORNL and envisions buildings of the future as resources capable of managing the flow and exchange of energy based on economic and market signals – a concept known as transactive energy. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Department of Energy

Joe Hagerman, ORNL research lead for buildings integration and controls, understands the impact building technology innovations can have during times of crisis. Over a decade ago, he found himself in the middle of one of the most devastating natural disasters of the century, Hurricane Katrina.