Skip to main content
Costas Tsouris portrait

While Tsouris’ water research is diverse in scope, its fundamentals are based on basic science principles that remain largely unchanged, particularly in a mature field like chemical engineering.

Argon pellet injection text

As scientists study approaches to best sustain a fusion reactor, a team led by Oak Ridge National Laboratory investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.

Kathy McCarthy

Kathy McCarthy has been named director of the US ITER Project Office at the Department of Energy’s Oak Ridge National Laboratory, effective March 2020.

Cropped INFUSE logo

The U.S. Department of Energy announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development.

Water and energy are inextricably linked, yet in our 20th-century water systems we use freshwater once then throw it away. With innovations designed to enhance desalination technologies, agricultural runoff, produced water from industry, and inland brackish groundwater that are now seen as untreatable could all be sources of clean, safe, and affordable water.

The National Alliance for Water Innovation, a partnership of the Department of Energy’s Oak Ridge National Laboratory, other national labs, university and private sector partners, has been awarded a five-year, $100 million Energy-Water Desalination Hub by DOE to address water security issues in the United States.

Tungsten tiles for fusion

Using additive manufacturing, scientists experimenting with tungsten at Oak Ridge National Laboratory hope to unlock new potential of the high-performance heat-transferring material used to protect components from the plasma inside a fusion reactor. Fusion requires hydrogen isotopes to reach millions of degrees.

Desalination process

A new method developed at Oak Ridge National Laboratory improves the energy efficiency of a desalination process known as solar-thermal evaporation. 

Desalination diagram

A team of scientists led by Oak Ridge National Laboratory used carbon nanotubes to improve a desalination process that attracts and removes ionic compounds such as salt from water using charged electrodes.

Illustration of the intricate organization of the PKA structure, wherein different parts of the protein are connected through elaborate hydrogen bonding networks (dashed yellow lines), glued together by the hydrophobic assemblies (light blue and orange volumes)—all working together to build the functional active site. Insert shows protonation of the transferred phosphoryl group (cyan mesh) and its many interactions with water and the active site amino acid residues. Credit: Jill Hemman/ORNL

OAK RIDGE, Tenn., March 20, 2019—Direct observations of the structure and catalytic mechanism of a prototypical kinase enzyme—protein kinase A or PKA—will provide researchers and drug developers with significantly enhanced abilities to understand and treat fatal diseases and neurological disorders such as cancer, diabetes, and cystic fibrosis.

Neutron scattering allowed direct observation of how aurein induces lateral segregation in the bacteria membranes, which creates instability in the membrane structure. This instability causes the membranes to fail, making harmful bacteria less effective.

As the rise of antibiotic-resistant bacteria known as superbugs threatens public health, Oak Ridge National Laboratory’s Shuo Qian and Veerendra Sharma from the Bhaba Atomic Research Centre in India are using neutron scattering to study how an antibacterial peptide interacts with and fights harmful bacteria.