Skip to main content
Belinda Akpa applies her diverse expertise and high-performance computing to accelerate the drug discovery process and increase the chances of success when candidate molecules go to clinical trials. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Belinda Akpa is a chemical engineer with a talent for tackling big challenges and fostering inclusivity and diversity in the next generation of scientists.

Rich Giannone uses bioanalytical mass spectrometry to examine proteins, the primary driver in biological systems.

Rich Giannone uses bioanalytical mass spectrometry to examine proteins, the primary driver in biological systems.

In situ monitoring to evaluate nickel-based superalloys as they are printing gave Mike Kirka, an ORNL materials scientist, the ability to see potential weaknesses that could lead to part failure. Credit: ORNL/U.S. Dept. of Energy

Growing up in the heart of the American automobile industry near Detroit, Oak Ridge National Laboratory materials scientist Mike Kirka was no stranger to manufacturing.

Computational biophysicist Ada Sedova is using experiments and high-performance computing to explore the properties of biological systems and predict their form and function, including research to accelerate drug discovery for COVID-19. Photo credit: Jason Richards, Oak Ridge National Laboratory, U.S. Dept. of Energy.

Ada Sedova’s journey to Oak Ridge National Laboratory has taken her on the path from pre-med studies in college to an accelerated graduate career in mathematics and biophysics and now to the intersection of computational science and biology

Yanwen Zhang

In the search to create materials that can withstand extreme radiation, Yanwen Zhang, a researcher at the Department of Energy’s Oak Ridge National Laboratory, says that materials scientists must think outside the box.

Omar Demerdash

With the rise of the global pandemic, Omar Demerdash, a Liane B. Russell Distinguished Staff Fellow at ORNL since 2018, has become laser-focused on potential avenues to COVID-19 therapies.

Scanning probe microscopes use an atom-sharp tip—only a few nanometers thick—to image materials on a nanometer length scale. The probe tip, invisible to the eye, is attached to a cantilever (pictured) that moves across material surfaces like the tone arm on a record player. Credit: Genevieve Martin/Oak Ridge National Laboratory; U.S. Dept. of Energy.

Liam Collins was drawn to study physics to understand “hidden things” and honed his expertise in microscopy so that he could bring them to light.

Sergei Kalinin, director of the Institute for Functional Imaging of Materials at Oak Ridge National Laboratory, convenes experts in microscopy and computing to gain scientific insights that will inform design of advanced materials for energy and informati

Sergei Kalinin of the Department of Energy’s Oak Ridge National Laboratory knows that seeing something is not the same as understanding it. As director of ORNL’s Institute for Functional Imaging of Materials, he convenes experts in microscopy and computing to gain scientific insigh...

Lauren Garrison

The materials inside a fusion reactor must withstand one of the most extreme environments in science, with temperatures in the thousands of degrees Celsius and a constant bombardment of neutron radiation and deuterium and tritium, isotopes of hydrogen, from the volatile plasma at th...