Skip to main content
ORNL’s Melissa Allen-Dumas examines the ways global and regional climate models can shed light on local climate effects and inform equitable solutions. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The world is full of “huge, gnarly problems,” as ORNL research scientist and musician Melissa Allen-Dumas puts it — no matter what line of work you’re in. That was certainly the case when she would wrestle with a tough piece of music.

The REVISE-II modeling tool developed at ORNL supports decision-making for electric vehicle charging infrastructure development along interstate highways in support of intercity travel. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have developed a nationwide modeling tool to help infrastructure planners decide where and when to locate electric vehicle charging stations along interstate highways. The goal is to encourage the adoption of EVs for cross-country travel.

An algorithm developed and field-tested by ORNL researchers uses machine learning to maintain homeowners’ preferred temperatures year-round while minimizing energy costs. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers designed and field-tested an algorithm that could help homeowners maintain comfortable temperatures year-round while minimizing utility costs.

Urban climate modeling

Researchers at Oak Ridge National Laboratory have identified a statistical relationship between the growth of cities and the spread of paved surfaces like roads and sidewalks. These impervious surfaces impede the flow of water into the ground, affecting the water cycle and, by extension, the climate.

ORNL has modeled the spike protein that binds the novel coronavirus to a human cell for better understanding of the dynamics of COVID-19. Credit: Stephan Irle/ORNL, U.S. Dept. of Energy

To better understand the spread of SARS-CoV-2, the virus that causes COVID-19, Oak Ridge National Laboratory researchers have harnessed the power of supercomputers to accurately model the spike protein that binds the novel coronavirus to a human cell receptor.

An X-ray CT image of a 3D-printed metal turbine blade was reconstructed using ORNL’s neural network and advanced algorithms. Credit: Amir Ziabari/ORNL, U.S. Dept. of Energy

Algorithms developed at Oak Ridge National Laboratory can greatly enhance X-ray computed tomography images of 3D-printed metal parts, resulting in more accurate, faster scans.

B_Hudak_ORNL.jpg

An Oak Ridge National Laboratory-led team used a scanning transmission electron microscope to selectively position single atoms below a crystal’s surface for the first time.

Sergei Kalinin, director of the Institute for Functional Imaging of Materials at Oak Ridge National Laboratory, convenes experts in microscopy and computing to gain scientific insights that will inform design of advanced materials for energy and informati

Sergei Kalinin of the Department of Energy’s Oak Ridge National Laboratory knows that seeing something is not the same as understanding it. As director of ORNL’s Institute for Functional Imaging of Materials, he convenes experts in microscopy and computing to gain scientific insigh...

Ryan Kerekes is leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory. Photos by Genevieve Martin, ORNL.

As leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory, Kerekes heads an accelerated lab-directed research program to build virtual models of critical infrastructure systems like the power grid that can be used to develop ways to detect and repel cyber-intrusion and to make the network resilient when disruption occurs.

Arjun Shankar

The field of “Big Data” has exploded in the blink of an eye, growing exponentially into almost every branch of science in just a few decades. Sectors such as energy, manufacturing, healthcare and many others depend on scalable data processing and analysis for continued in...