Skip to main content
Drawing of thin-film cathode technology

Oak Ridge National Laboratory scientists seeking the source of charge loss in lithium-ion batteries demonstrated that coupling a thin-film cathode with a solid electrolyte is a rapid way to determine the root cause.

Researchers at Oak Ridge National Laboratory and the University of Tennessee, Knoxville, demonstrated a novel fabrication method for affordable gas membranes that can remove carbon dioxide from industrial emissions. Credit: Zhenzhen Yang/UT.

Researchers at the Department of Energy’s Oak Ridge National Laboratory and the University of Tennessee, Knoxville, are advancing gas membrane materials to expand practical technology options for reducing industrial carbon emissions.

Members of the international team simulated changes to the start times of monsoon seasons across the globe, with warm colors representing onset delays. Credit: Moetasim Ashfaq and Adam Malin/Oak Ridge National Laboratory, U.S. Dept. of Energy

Scientists from the Department of Energy’s Oak Ridge National Laboratory and a dozen other international research institutions have produced the most elaborate set of projections to date that illustrates possible futures for major monsoon regions.

Selenium atoms, represented by orange, implant in a monolayer of blue tungsten and yellow sulfur to form a Janus layer. In the background, electron microscopy confirms atomic positions. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

An ORNL team used a simple process to implant atoms precisely into the top layers of ultra-thin crystals, yielding two-sided structures with different chemical compositions.

From left, Peter Jiang, Elijah Martin and Benjamin Sulman have been selected for Early Career Research Program awards from the Department of Energy's Office of Science. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

The Department of Energy’s Office of Science has selected three Oak Ridge National Laboratory scientists for Early Career Research Program awards.

A nanobrush made by pulsed laser deposition of CeO2 and Y2O3 with dim and bright bands, respectively, is seen in cross-section with scanning transmission electron microscopy. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

A team led by the Department of Energy’s Oak Ridge National Laboratory synthesized a tiny structure with high surface area and discovered how its unique architecture drives ions across interfaces to transport energy or information.

Matthew R. Ryder

Matthew R. Ryder, a researcher at the Department of Energy’s Oak Ridge National Laboratory, has been named the 2020 Foresight Fellow in Molecular-Scale Engineering. 

Computing – Mining for COVID-19 connections

Scientists have tapped the immense power of the Summit supercomputer at Oak Ridge National Laboratory to comb through millions of medical journal articles to identify potential vaccines, drugs and effective measures that could suppress or stop the

Batteries - The 3D connection

Oak Ridge National Laboratory researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.

Before the demonstration, the team prepared QKD equipment (pictured) at ORNL. Image credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy

For the second year in a row, a team from the Department of Energy’s Oak Ridge and Los Alamos national laboratories led a demonstration hosted by EPB, a community-based utility and telecommunications company serving Chattanooga, Tennessee.