Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Tomonori Saito
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Andrzej Nycz
- Chris Masuo
- Ethan Self
- Jaswinder Sharma
- Luke Meyer
- Robert Sacci
- Sergiy Kalnaus
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Bekki Mills
- Bruce Hannan
- Chanho Kim
- Dave Willis
- Georgios Polyzos
- Ilias Belharouak
- John Wenzel
- Joshua Vaughan
- Jun Yang
- Keju An
- Khryslyn G Araño
- Logan Kearney
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peter Wang
- Polad Shikhaliev
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Vasilis Tzoganis
- Vasiliy Morozov
- Vera Bocharova
- Victor Fanelli
- Vladislav N Sedov
- Xiang Lyu
- Yacouba Diawara
- Yun Liu

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

Neutron beams are used around the world to study materials for various purposes.

Current battery materials such as silicon suffer from poor ion and electron transport due to non-optimal wiring. This invention facilitates particle interconnectedness to facilitate ion motion and electron transport overcoming poor assembly.

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

Adhesives for metal parts typically are liquid-based which require complex processing. This technology is a hot melt adhesive that is mixed and applied in a solid form and after the heating and cooling cycle creates strong bonds with the substrates in a matter of seconds.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.