Skip to main content

Robust Copper-Based Nanosponge Architecture Decorated by Ruthenium with Enhanced Electrocatalytic Performance for Ambient Nit...

Publication Type
Journal Name
ACS Applied Materials & Interfaces
Publication Date
Page Numbers
11703 to 11712

Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber–Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru–Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 μg h–1 mgcat.–1 (corresponding to 10.5 μg h–1 cm–2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.