Skip to main content

Ionic Conductivity Enhancement of Polymer Electrolytes by Directed Crystallization...

Publication Type
Journal Name
ACS Macro Letters
Publication Date
Page Numbers
595 to 602

We report that hot stretching of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) can lead to a preferred orientation of PEO crystalline lamellae, thereby reducing the tortuosity of the ion-conduction pathway along the thickness direction of the SPE film, causing improved ionic conductivity. The hot stretching method is implemented by stretching SPE films above the melting point of PEO in an inert environment followed by crystallization at room temperature while maintaining the applied strain. The effect of hot stretching on the crystalline orientation, crystallinity, morphology, and ion transport in PEO with two types of salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium triflate (LiCF3SO3), is investigated in detail. Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) show that the orientation of PEO crystalline lamellae induces the formation of a short ion-conduction pathway along the through-plane direction of the SPE films, leading to 1.4- to 3.5-fold enhancement in the through-plane ionic conductivity.