For outstanding scientific leadership in nuclear physics and foundational work in developing and applying nuclear density functional theory to atomic nuclei
For outstanding scientific impact in computational soft matter and nanoscience through cross-discipline collaboration to address materials problems and discover new functional materials
For environmental-effects research related to energy technologies and their use, focusing on the impacts of climate and atmospheric changes on the physiology, growth, and biogeochemical cycles of North American forest ecosystems.
For pioneering research and development of new materials for advanced energy technologies, including materials for (a) the storage of nuclear waste, (b) the solid-state generation of electrical power directly from heat, and (c) the lossless transport of electricity.
For distinguished research on the air/surface exchange of atmospheric trace gases and particles and their interactions with the Earth's biogeochemical cycles, and for pioneering developments in atmospheric sampling methodologies with special emphasis on the global mercury cycle.
For basic studies in the fracture of and toughening mechanisms in ceramics and ceramic composites, in the establishment of the relationships between microstructure and composition and mechanical behavior, and in the development of advanced ceramic materials.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.