For his internationally recognized accomplishments in high-energy physics, radiation transport, and detector and neutron target research and development.
For distinguished research on the air/surface exchange of atmospheric trace gases and particles and their interactions with the Earth's biogeochemical cycles, and for pioneering developments in atmospheric sampling methodologies with special emphasis on the global mercury cycle.
For experimental studies in atomic and molecular physics, particularly developments in the field of nonlinear laser spectroscopy and the physics of negative ions
Mook has conducted neutron scattering research on a broad spectrum of materials. He is best known for his pioneering research on the magnetic excitations of transition metal ferromagnets and the observation of itinerant electron effects in these materials.
For his internationally recognized work in the theory of alloys and his pioneering applications of massively parallel computing to first-principles calculations of the properties of materials.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.