For his role in conceiving, designing, and implementing novel geocomputational methods to help solve a wide variety of national and global problems in energy, the environment, and national security.
For pioneering studies of the functionality of mesoporous oxides and carbons for real-world applications, ionic liquids for chemical separation and materials synthesis, and catalysis by nanomaterials.
For his pioneering research in atom probe field-ion microscopy and atom probe tomography, most recently to understand the unprecedented properties and behaviors of nanostructured ferritic steels.
For significant contributions and leadership in the processing and properties of materials, particularly intermetallic alloys, which have led to his reputation as one of the world's leading scientists in these areas.
For pioneering accomplishments in the fields of global optimization, artificial neural networks, and high performance computing based on quantum devices.
For significant and fundamental achievements in laser-based chemical measurement techniques, such as single molecule detection in liquids, and pioneering the efforts in the development of microfabricated chemical instrumentation, including the laboratory on a chip concept.
Greenbaum, the winner of the 1995 DOE Biological and Chemical Technologies Research Award, has done extensive experimental work in photosynthesis, the process by which green plants grow, and its application to renewable energy production.