Skip to main content
The Fuel Pellet Fueling Laboratory at ORNL is part of a suite of fusion energy R&D capabilities and provides test equipment and related diagnostics for carrying out experiments to develop pellet injectors for plasma fueling applications. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL will team up with six of eight companies that are advancing designs and research and development for fusion power plants with the mission to achieve a pilot-scale demonstration of fusion within a decade.

ORNL fusion technology scientist Tim Bigelow, right, stands near the control console in ORNL’s  fusion control room with Matt Houde of Quaise Energy. Their partnership aims to tackle technical challenges with the Millimeter Wave Drilling System that Quaise has developed. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Researchers in the geothermal energy industry are joining forces with fusion experts at ORNL to repurpose gyrotron technology, a tool used in fusion. Gyrotrons produce high-powered microwaves to heat up fusion plasmas.

Innovation Crossroads Cohort Six includes: Bianca Bailey, Agriwater; Rajan Kumar, Ateois Systems; Alex Stiles, Vitriform3D; Kim Tutin, Captis Aire; Anca Timofte, Holocene Climate; and Pete Willette, facil.ai. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory’s Innovation Crossroads program welcomes six new science and technology innovators from across the United States to the sixth cohort. 

A team of fusion scientists and engineers stand in front of ORNL’s Helium Flow Loop device. From back left to front right: Chris Crawford, Fayaz Rasheed, Joy Fan, Michael Morrow, Charles Kessel, Adam Carroll, and Cody Wiggins. Not pictured: Dennis Youchison and Monica Gehrig. Credit: Carlos Jones/ORNL.

To achieve practical energy from fusion, extreme heat from the fusion system “blanket” component must be extracted safely and efficiently. ORNL fusion experts are exploring how tiny 3D-printed obstacles placed inside the narrow pipes of a custom-made cooling system could be a solution for removing heat from the blanket.

High voltage power lines carry electricity generated by the Tennessee Valley Authority to ORNL. Credit: Dobie Gillispie/ORNL, U.S. Dept. of Energy

ORNL and the Tennessee Valley Authority, or TVA, are joining forces to advance decarbonization technologies from discovery through deployment through a new memorandum of understanding, or MOU.

Mars Rover 2020

More than 50 current employees and recent retirees from ORNL received Department of Energy Secretary’s Honor Awards from Secretary Jennifer Granholm in January as part of project teams spanning the national laboratory system. The annual awards recognized 21 teams and three individuals for service and contributions to DOE’s mission and to the benefit of the nation.

In a study, ORNL researchers concluded that the most direct path to plastic upcycling is through designing polymers specifically for reuse, which would allow the material to be converted into high-value products. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers determined that designing polymers specifically with upcycling in mind could reduce future plastic waste considerably and facilitate a circular economy where the material is used repeatedly.

Biopsy from the tubular esophagus showing incomplete intestinal metaplasia, goblet cells with interposed cells having gastric foveolar-type mucin consistent with Barrett esophagus. Negative for dysplasia. H&E stain. Credit: Creative Commons

A team including researchers from the Department of Energy’s Oak Ridge National Laboratory has developed a digital tool to better monitor a condition known as Barrett’s esophagus, which affects more than 3 million people in the United States.

ORNL researchers developed a novel process for manufacturing extreme heat resistant carbon-carbon composites at a faster rate and produced fins or strakes made of the materials for testing on a U.S. Navy rocket launching with NASA. Credit: ORNL, Sandia/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a novel process to manufacture extreme heat resistant carbon-carbon composites. The performance of these materials will be tested in a U.S. Navy rocket that NASA will launch this fall.

A 3D printed thermal protection shield, produced by ORNL researchers for NASA, is part of a cargo spacecraft bound for the International Space Station. The shield was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. Credit: ORNL, U.S. Dept. of Energy

A research team at Oak Ridge National Laboratory have 3D printed a thermal protection shield, or TPS, for a capsule that will launch with the Cygnus cargo spacecraft as part of the supply mission to the International Space Station.