Skip to main content
Virtual universes

Using Summit, the world’s most powerful supercomputer housed at Oak Ridge National Laboratory, a team led by Argonne National Laboratory ran three of the largest cosmological simulations known to date.

ORNL researchers printed thin metal walls using large-scale metal additive manufacturing, a wire-arc process that demonstrated stability, uniformity and precise geometry throughout the deposition. The method could be a viable option for large-scale additive manufacturing of metal components. ORNL collaborated with industry partner Lincoln Electric. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

A novel additive manufacturing method developed by researchers at Oak Ridge National Laboratory could be a promising alternative for low-cost, high-quality production of large-scale metal parts with less material waste.

Small modular reactor computer simulation

In a step toward advancing small modular nuclear reactor designs, scientists at Oak Ridge National Laboratory have run reactor simulations on ORNL supercomputer Summit with greater-than-expected computational efficiency.

Low-cost, compact, printed sensor that can collect and transmit data on electrical appliances for better load monitoring

Scientists at Oak Ridge National Laboratory have developed a low-cost, printed, flexible sensor that can wrap around power cables to precisely monitor electrical loads from household appliances to support grid operations.

 

As part of a preliminary study, ORNL scientists used critical location data collected from Twitter to map the location of certain power outages across the United States.

Gleaning valuable data from social platforms such as Twitter—particularly to map out critical location information during emergencies— has become more effective and efficient thanks to Oak Ridge National Laboratory.

18-G01703 PinchPoint-v2.jpg

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source to investigate bizarre magnetic behavior, believed to be a possible quantum spin liquid rarely found in a three-dimensional material. QSLs are exotic states of matter where magnetism continues to fluctuate at low temperatures instead of “freezing” into aligned north and south poles as with traditional magnets.

Researchers 3D printed molds for precasting concrete using the Big Area Additive Manufacturing, or BAAM™, system at DOE’s Manufacturing Demonstration Facility at ORNL. Complex, durable mold designs can be produced in less time than traditional wood or fib

The construction industry may soon benefit from 3D printed molds to make concrete facades, promising lower cost and production time. Researchers at Oak Ridge National Laboratory are evaluating the performance of 3D printed molds used to precast concrete facades in a 42-story buildin...

3D printed permanent magnets with increased density were made from an improved mixture of materials, which could lead to longer lasting, better performing magnets for electric motors, sensors and vehicle applications. Credit: Jason Richards/Oak Ridge Nati

Oak Ridge National Laboratory scientists have improved a mixture of materials used to 3D print permanent magnets with increased density, which could yield longer lasting, better performing magnets for electric motors, sensors and vehicle applications. Building on previous research, ...

An Oak Ridge National Laboratory–led team has developed super-stretchy polymers with amazing self-healing abilities that could lead to longer-lasting consumer products.

An Oak Ridge National Laboratory–led team has developed super-stretchy polymers with amazing self-healing abilities that could lead to longer-lasting consumer products.

Materials—Polymer-theory-problem

Scientists at Oak Ridge National Laboratory have conducted a series of breakthrough experimental and computational studies that cast doubt on a 40-year-old theory describing how polymers in plastic materials behave during processing.