Skip to main content
Jack Cahill of ORNL’s Biosciences Division is developing new techniques to view and measure the previously unseen to better understand important chemical processes at play in plant-microbe interactions and in human health. In this photo, Cahill is positioning a rhizosphere-on-a-chip platform for imaging by mass spectrometry. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

John “Jack” Cahill is out to illuminate previously unseen processes with new technology, advancing our understanding of how chemicals interact to influence complex systems whether it’s in the human body or in the world beneath our feet.

ORNL fusion technology scientist Tim Bigelow, right, stands near the control console in ORNL’s  fusion control room with Matt Houde of Quaise Energy. Their partnership aims to tackle technical challenges with the Millimeter Wave Drilling System that Quaise has developed. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Researchers in the geothermal energy industry are joining forces with fusion experts at ORNL to repurpose gyrotron technology, a tool used in fusion. Gyrotrons produce high-powered microwaves to heat up fusion plasmas.

Scientists at ORNL have created a rhizosphere-on-a-chip research platform, a miniaturized environment to study the ecosystem around poplar tree roots for insights into plant health and soil carbon sequestration. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL have created a miniaturized environment to study the ecosystem around poplar tree roots for insights into plant health and soil carbon sequestration.

Samarthya Bhagia examines a sample of a thermoplastic composite material additively manufactured using poplar wood and polylactic acid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Chemical and environmental engineer Samarthya Bhagia is focused on achieving carbon neutrality and a circular economy by designing new plant-based materials for a range of applications from energy storage devices and sensors to environmentally friendly bioplastics.

Giri Prakash, director of the ARM Data Center, works with the latest ARM computing cluster at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The Atmospheric Radiation Measurement Data Center is shepherding changes to its operations to make the treasure trove of data more easily available accessible and useful to scientists studying Earth’s climate.

Scattering-type scanning near-field optical microscopy, a nondestructive technique in which the tip of the probe of a microscope scatters pulses of light to generate a picture of a sample, allowed the team to obtain insights into the composition of plant cell walls. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

To optimize biomaterials for reliable, cost-effective paper production, building construction, and biofuel development, researchers often study the structure of plant cells using techniques such as freezing plant samples or placing them in a vacuum.

ORNL’s Bruce Pint, left, and Marie Romedenne review experiment results. Credit: ORNL, U.S. Dept. of Energy

Practical fusion energy is not just a dream at ORNL. Experts in fusion and material science are working together to develop solutions that will make a fusion pilot plant — and ultimately carbon-free, abundant fusion electricity — possible.

Jennifer Morrell-Falvey leads the Molecular and Cellular Imaging group at ORNL, advancing new insights in several scientific areas, including the interactions between plants and microbes that influence ecosystem health and carbon cycling. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Jennifer Morrell-Falvey’s interest in visualizing the science behind natural processes was what drew her to ORNL in what she expected to be a short stint some 18 years ago. 

A team of fusion scientists and engineers stand in front of ORNL’s Helium Flow Loop device. From back left to front right: Chris Crawford, Fayaz Rasheed, Joy Fan, Michael Morrow, Charles Kessel, Adam Carroll, and Cody Wiggins. Not pictured: Dennis Youchison and Monica Gehrig. Credit: Carlos Jones/ORNL.

To achieve practical energy from fusion, extreme heat from the fusion system “blanket” component must be extracted safely and efficiently. ORNL fusion experts are exploring how tiny 3D-printed obstacles placed inside the narrow pipes of a custom-made cooling system could be a solution for removing heat from the blanket.

ORNL fusion scientist Elijah Martin is working with TAE Technologies to demonstrate the feasibility of field-reversed configuration reactors, a possible alternative to the traditional tokamak-based devices. Credit: ORNL.

ORNL manages the Innovation Network for Fusion Energy Program, or INFUSE, with Princeton Plasma Physics Laboratory, to help the private sector find solutions to technical challenges that need to be resolved to make practical fusion energy a reality.