Skip to main content
Benjamin Sulman, a scientist in ORNL’s Environmental Sciences Division, creates Earth system models that simulate how plants, microbes and soils interact and influence the cycling of carbon, water and nutrients in their environment. His work aims to helps researchers across disciplines better understand complex, rapidly changing ecosystems, including coastal wetlands and Arctic permafrost soils. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As rising global temperatures alter ecosystems worldwide, the need to accurately simulate complex environmental processes under evolving conditions is more urgent than ever.

ORNL and NASA’s Jet Propulsion Laboratory scientists studied the formation of amorphous ice like the exotic ice found in interstellar space and on Jupiter’s moon, Europa. Credit: NASA/JPL-Caltech

Researchers from NASA’s Jet Propulsion Laboratory and Oak Ridge National Laboratory successfully created amorphous ice, similar to ice in interstellar space and on icy worlds in our solar system. They documented that its disordered atomic behavior is unlike any ice on Earth.

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

The Department of Energy’s Office of Science has selected five Oak Ridge National Laboratory scientists for Early Career Research Program awards.

The Department of Energy’s Office of Science has selected five Oak Ridge National Laboratory scientists for Early Career Research Program awards.

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Parans Paranthaman, a researcher in the Chemical Sciences Division at ORNL, coordinated research efforts to study the filter efficiency of the N95 material. His published results represent one of the first studies on polypropylene as it relates to COVID-19. Credit: ORNL/U.S. Dept. of Energy

When COVID-19 was declared a pandemic in March 2020, Oak Ridge National Laboratory’s Parans Paranthaman suddenly found himself working from home like millions of others.

Transition metals stitched into graphene with an electron beam form promising quantum building blocks. Credit: Ondrej Dyck, Andrew Lupini and Jacob Swett/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists demonstrated that an electron microscope can be used to selectively remove carbon atoms from graphene’s atomically thin lattice and stitch transition-metal dopant atoms in their place.

A 3D printed turbine blade demonstrates the use of the new class of nickel-based superalloys that can withstand extreme heat environments without cracking or losing strength. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have demonstrated that a new class of superalloys made of cobalt and nickel remains crack-free and defect-resistant in extreme heat, making them conducive for use in metal-based 3D printing applications.

The Perseverance rover

On Feb. 18, the world will be watching as NASA’s Perseverance rover makes its final descent into Jezero Crater on the surface of Mars. Mars 2020 is the first NASA mission that uses plutonium-238 produced at the Department of Energy’s Oak Ridge National Laboratory.

 The researchers embedded a programmable model into a D-Wave quantum computer chip. Credit: D-Wave

A multi-institutional team became the first to generate accurate results from materials science simulations on a quantum computer that can be verified with neutron scattering experiments and other practical techniques.