Skip to main content
ORNL researchers used neutrons at the lab’s Spallation Neutron Source to analyze modified high-entropy metal alloys with enhanced strength and ductility, or the ability to stretch, under high-stress without failing. Credit: Rui Feng/ORNL, U.S. Dept. of Energy
Researchers at Oak Ridge National Laboratory have developed a method of adding nanostructures to high-entropy metal alloys, or HEAs, that enhance both strength and ductility, which is the ability to deform or stretch
An open-source code developed by an ORNL-led team could provide new insights into the everyday operation of the nation’s power grid. Credit: Pixabay

Oak Ridge National Laboratory, University of Tennessee and University of Central Florida researchers released a new high-performance computing code designed to more efficiently examine power systems and identify electrical grid disruptions, such as

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

Matthew Ryder is researching next-generation materials using neutron scattering as a Clifford G. Shull Fellow at Oak Ridge National Laboratory’s Neutron Sciences Directorate. (Image credit: ORNL/Genevieve Martin)

Matthew Ryder has been named an emerging investigator by the American Chemical Society journal Crystal Growth and Design. The ACS recognized him as “one of an emerging generation of research group leaders for his work on porous materials design.”

The D2U model categorizes user data by capturing behavior in all open programs throughout a user’s day. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have created a technology that more realistically emulates user activities to improve cyber testbeds and ultimately prevent cyberattacks.

Researchers gained new insights into the mechanisms some methane-feeding bacteria called methanotrophs (pictured) use to break down the toxin methylmercury. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy; Jeremy Semrau/Univ. of Michigan

A team led by ORNL and the University of Michigan have discovered that certain bacteria can steal an essential compound from other microbes to break down methane and toxic methylmercury in the environment.

Marm Dixit, a Weinberg Distinguished Staff Fellow in the Emerging and Solid-State Batteries Group at ORNL, has received a Toyota Young Investigator Fellowship for Projects in Green Energy Technology from the Electrochemical Society. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Marm Dixit, a Weinberg Distinguished Staff Fellow in the Emerging and Solid-State Batteries Group at ORNL, has been awarded a Toyota Young Investigator Fellowship for Projects in Green Energy Technology from the Electrochemical Society.

The Oak Ridge National Environmental Research Park encompasses a 20,000 acre area that includes Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Anyone familiar with ORNL knows it’s a hub for world-class science. The nearly 33,000-acre space surrounding the lab is less known, but also unique.

Hope Corsair. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

When Hope Corsair’s new colleagues at Oak Ridge National Laboratory ask her about her area of expertise, she tells them it’s “context.” Her goal as an energy economist is to make sure ORNL’s breakthroughs have the widest possible

Former ORNL Director Thom Mason presents Tom Kollie with a National Intelligence Meritorious Unit Citation on behalf of James Clapper, former director of national intelligence, and the national intelligence community in June 2017. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

A 25-year career with the U.S. Navy, commanding combat missions overseas, brought Tom Kollie back to where he came from — ready to serve his country in a new way.