Skip to main content
The 3D printed concrete smart wall installed at ORNL over the summer was monitored for energy efficiency, with preliminary results showing a minimum of 8% cost savings. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that cooling cost savings could be achieved with a 3D printed concrete smart wall following a three-month field test.

ORNL used novel additive manufacturing techniques to 3D print channel fasteners for Framatome’s boiling water reactor fuel assembly. Four components, like the one shown here, were installed at the TVA Browns Ferry nuclear plant. Credit: Framatome

Four first-of-a-kind 3D-printed fuel assembly brackets, produced at the Department of Energy’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory, have been installed and are now under routine operating

A 3D printed thermal protection shield, produced by ORNL researchers for NASA, is part of a cargo spacecraft bound for the International Space Station. The shield was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. Credit: ORNL, U.S. Dept. of Energy

A research team at Oak Ridge National Laboratory have 3D printed a thermal protection shield, or TPS, for a capsule that will launch with the Cygnus cargo spacecraft as part of the supply mission to the International Space Station.

From left to right are Beth Armstrong, Govindarajan Muralidharan and Andrew Payzant.

ASM International recently elected three researchers from ORNL as 2021 fellows. Selected were Beth Armstrong and Govindarajan Muralidharan, both from ORNL’s Material Sciences and Technology Division, and Andrew Payzant from the Neutron Scattering Division.

From top to bottom respectively, alloys were made without nanoprecipitates or with coarse or fine nanoprecipitates to assess effects of their sizes and spacings on mechanical behavior. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Scientists at ORNL and the University of Tennessee, Knoxville, have found a way to simultaneously increase the strength and ductility of an alloy by introducing tiny precipitates into its matrix and tuning their size and spacing.

ORNL researchers demonstrated a 3D printed power pole made of bioderived and recycled materials could be easily manufactured, transported and assembled, enabling the quick restoration of power after natural disasters. Credit: ORNL, U.S. Dept. of Energy

A team of researchers at Oak Ridge National Laboratory demonstrated the ability to additively manufacture power poles from bioderived and recycled materials, which could more quickly restore electricity after natural disasters.

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus.

Innovation Crossroads Cohort 5 includes left to right: Caleb Alexander, DayLyte Batteries; Sam Evans, Unbound Water Technologies; Tommy Gibbons, Hempitecture; Shuchi “SK” Khurana, Addiguru; Forrest Shriver, Sentinel Devices; and Philip Stuckey, FC Renew.

Six science and technology innovators from across the United States will join the fifth cohort of Oak Ridge National Laboratory’s Innovation Crossroads program in June.

ORNL and NASA’s Jet Propulsion Laboratory scientists studied the formation of amorphous ice like the exotic ice found in interstellar space and on Jupiter’s moon, Europa. Credit: NASA/JPL-Caltech

Researchers from NASA’s Jet Propulsion Laboratory and Oak Ridge National Laboratory successfully created amorphous ice, similar to ice in interstellar space and on icy worlds in our solar system. They documented that its disordered atomic behavior is unlike any ice on Earth.

By using computer-aided design and additive manufacturing, developers can improve the performance characteristics of geothermal tools, such as this optimized rotor design, and reduce production cost. Credit: ORNL/U.S. Dept. of Energy

Additive manufacturing can make the design and production of specialized tools for geothermal energy cheaper and more efficient, according to a study by Oak Ridge National Laboratory.