Skip to main content
ORNL’s Larry York studies how plant root traits contribute to crop productivity. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Biologist Larry York’s fascination with plant roots has spurred his research across four continents and inspired him to create accessible tools that enable others to explore the underground world.

Carrie Eckert

Carrie Eckert applies her skills as a synthetic biologist at ORNL to turn microorganisms into tiny factories that produce a variety of valuable fuels, chemicals and materials for the growing bioeconomy.

Researchers gained new insights into the mechanisms some methane-feeding bacteria called methanotrophs (pictured) use to break down the toxin methylmercury. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy; Jeremy Semrau/Univ. of Michigan

A team led by ORNL and the University of Michigan have discovered that certain bacteria can steal an essential compound from other microbes to break down methane and toxic methylmercury in the environment.

The Oak Ridge National Environmental Research Park encompasses a 20,000 acre area that includes Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Anyone familiar with ORNL knows it’s a hub for world-class science. The nearly 33,000-acre space surrounding the lab is less known, but also unique.

As the leader of ORNL’s Biodiversity and Ecosystem Health Group, environmental scientist Teresa Mathews works to understand the impacts of energy generation on water and solve challenging problems, including mercury pollution. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Moving to landlocked Tennessee isn’t an obvious choice for most scientists with new doctorate degrees in coastal oceanography.

ORNL metabolic engineer Adam Guss develops genetic tools to modify microbes that can perform a range of processes needed to create sustainable biofuels and bioproducts. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As a metabolic engineer at Oak Ridge National Laboratory, Adam Guss modifies microbes to perform the diverse processes needed to make sustainable biofuels and bioproducts.

This spring, Brood X cicadas emerged from the ground after 17 years burrowed and swarmed across the eastern United States, leaving a trail of exoskeletons and echoes of mating calls. Cicadas emerge in such large quantities to withstand predation and successfully maintain their populations, and trees actually play a key role in their life cycle. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

On the road leading to Oak Ridge National Laboratory, drivers may notice that many of the green trees lining the entrance to the lab are dappled with brown leaves. Just weeks past the summer solstice, this phenomenon is out of place and is in fact evidence of another natural occurrence: cicada “flagging.”

Researchers studying secondary metabolites in the fungus Aspergillus flavus, pictured, found unique mixes of metabolites corresponding to genetically distinct populations. The finding suggests local environmental conditions play a key role in secondary metabolite production, influencing the discovery of drugs and other useful compounds. Credit: Tomás Allen Rush/ORNL, U.S. Dept. of Energy.

Scientists at ORNL and the University of Wisconsin–Madison have discovered that genetically distinct populations within the same species of fungi can produce unique mixes of secondary metabolites, which are organic compounds with applications in

ORNL’s Josh Michener, a microbiologist and metabolic engineer, led the discovery of a useful new enzyme that breaks down stubborn bonds in lignin, a polymer found in plants that typically becomes waste during bioconversion. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In a step toward increasing the cost-effectiveness of renewable biofuels and bioproducts, scientists at ORNL discovered a microbial enzyme that degrades tough-to-break bonds in lignin, a waste product of biorefineries.

Brian Davison portrait

In a long career full of scientific accomplishments, Brian Davison counts among his many successes the formation of ORNL’s LGBTQIA+ employee group and helping gay and lesbian staff at the lab