Skip to main content
Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

New manufacturing process produces better, cheaper cathodes for lithium-ion batteries. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL have developed a new method for producing a key component of lithium-ion batteries. The result is a more affordable battery from a faster, less wasteful process that uses less toxic material.

ORNL postdoctoral researcher Runming Tao, pictured with a coin cell battery, led an effort to discover new anode materials for fast-charging lithium-ion batteries. Credit: ORNL/Genevieve Martin, U.S. Dept. of Energy

Researchers at ORNL and the University of Tennessee, Knoxville, discovered a key material needed for fast-charging lithium-ion batteries. The commercially relevant approach opens a potential pathway to improve charging speeds for electric vehicles.

Mars Rover 2020

More than 50 current employees and recent retirees from ORNL received Department of Energy Secretary’s Honor Awards from Secretary Jennifer Granholm in January as part of project teams spanning the national laboratory system. The annual awards recognized 21 teams and three individuals for service and contributions to DOE’s mission and to the benefit of the nation.

Illustration of a nitrogen dioxide molecule (depicted in blue and purple) captured in a nano-size pore of an MFM-520 metal-organic framework material as observed using neutron vibrational spectroscopy at Oak Ridge National Laboratory. Image credit: ORNL/Jill Hemman

An international team of scientists, led by the University of Manchester, has developed a metal-organic framework, or MOF, material

Illustration of the intricate organization of the PKA structure, wherein different parts of the protein are connected through elaborate hydrogen bonding networks (dashed yellow lines), glued together by the hydrophobic assemblies (light blue and orange volumes)—all working together to build the functional active site. Insert shows protonation of the transferred phosphoryl group (cyan mesh) and its many interactions with water and the active site amino acid residues. Credit: Jill Hemman/ORNL

OAK RIDGE, Tenn., March 20, 2019—Direct observations of the structure and catalytic mechanism of a prototypical kinase enzyme—protein kinase A or PKA—will provide researchers and drug developers with significantly enhanced abilities to understand and treat fatal diseases and neurological disorders such as cancer, diabetes, and cystic fibrosis.

Neutron scattering allowed direct observation of how aurein induces lateral segregation in the bacteria membranes, which creates instability in the membrane structure. This instability causes the membranes to fail, making harmful bacteria less effective.

As the rise of antibiotic-resistant bacteria known as superbugs threatens public health, Oak Ridge National Laboratory’s Shuo Qian and Veerendra Sharma from the Bhaba Atomic Research Centre in India are using neutron scattering to study how an antibacterial peptide interacts with and fights harmful bacteria.

Using neutrons from the TOPAZ beamline, which is optimal for locating hydrogen atoms in materials, ORNL researchers observed a single-crystal neutron diffraction structure of the insoluble carbonate salt formed by absorption of carbon dioxide from the air.

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source to investigate the effectiveness of a novel crystallization method to capture carbon dioxide directly from the air.

Researchers analyzed the oxygen structure (highlighted in red) found in a perovskite’s crystal structure at room temperature, 500°C and 900°C using neutron scattering at ORNL’s Spallation Neutron Source. Analyzing how these structures impact solid oxide f

A University of South Carolina research team is investigating the oxygen reduction performance of energy conversion materials called perovskites by using neutron diffraction at Oak Ridge National Laboratory’s Spallation Neutron Source.