Skip to main content
The electromagnetic isotope separator system operates by vaporizing an element such as ruthenium into the gas phase, converting the molecules into an ion beam, and then channeling the beam through magnets to separate out the different isotopes.

A tiny vial of gray powder produced at the Department of Energy’s Oak Ridge National Laboratory is the backbone of a new experiment to study the intense magnetic fields created in nuclear collisions.

Oak Ridge National Laboratory’s Summit supercomputer was named No. 1 on the TOP500 List, a semiannual ranking of the world’s fastest computing systems. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy.

The US Department of Energy’s Oak Ridge National Laboratory is once again officially home to the fastest supercomputer in the world, according to the TOP500 List, a semiannual ranking of the world’s fastest computing systems.

Oak Ridge National Laboratory launches Summit supercomputer.

The U.S. Department of Energy’s Oak Ridge National Laboratory today unveiled Summit as the world’s most powerful and smartest scientific supercomputer.

Radiochemical technicians David Denton and Karen Murphy use hot cell manipulators at Oak Ridge National Laboratory during the production of actinium-227.

The Department of Energy’s Oak Ridge National Laboratory is now producing actinium-227 (Ac-227) to meet projected demand for a highly effective cancer drug through a 10-year contract between the U.S. DOE Isotope Program and Bayer.

Graphical representation of a deuteron, the bound state of a proton (red) and a neutron (blue). Credit: Andy Sproles/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Physical Review Letters, demonstrate the ability of quantum systems to compute nuclear ph...

From left, ORNL’s Rick Lowden, Chris Bryan and Jim Kiggans were troubled that target discs of a material needed to produce Mo-99 using an accelerator could deform after irradiation and get stuck in their holder.

“Made in the USA.” That can now be said of the radioactive isotope molybdenum-99 (Mo-99), last made in the United States in the late 1980s. Its short-lived decay product, technetium-99m (Tc-99m), is the most widely used radioisotope in medical diagnostic imaging. Tc-99m is best known ...

Illustration of satellite in front of glowing orange celestial body

A shield assembly that protects an instrument measuring ion and electron fluxes for a NASA mission to touch the Sun was tested in extreme experimental environments at Oak Ridge National Laboratory—and passed with flying colors. Components aboard Parker Solar Probe, which will endure th...

Julie Smith

It may take a village to raise a child, according to the old proverb, but it takes an entire team of highly trained scientists and engineers to install and operate a state-of-the-art, exceptionally complex ion microprobe. Just ask Julie Smith, a nuclear security scientist at the Depa...

Default image of ORNL entry sign

James Peery, who led critical national security programs at Sandia National Laboratories and held multiple leadership positions at Los Alamos National Laboratory before arriving at the Department of Energy’s Oak Ridge National Laboratory last year, has been named a...

Composites scientist and engineer Vlastimil Kunc with the latest large-scale 3Dprinter at the MDF.

Vlastimil Kunc grew up in a family of scientists where his natural curiosity was encouraged—an experience that continues to drive his research today in polymer composite additive manufacturing at Oak Ridge National Laboratory. “I’ve been interested in the science of composites si...