Skip to main content

News

Physics_silicon-detectors.jpg

Physicists turned to the “doubly magic” tin isotope Sn-132, colliding it with a target at Oak Ridge National Laboratory to assess its properties as it lost a neutron to become Sn-131.

hvac_grid03.png

Oak Ridge National Laboratory scientists have devised a method to control the heating and cooling systems of a large network of buildings for power grid stability—all while ensuring the comfort of occupants.

ORNL researchers Gaute Hagen, Masaaki Matsuda, and Parans Paranthaman has been elected fellow of the American Physical Society.

Three researchers from the Department of Energy’s Oak Ridge National Laboratory have been elected fellows of the American Physical Society (APS). Fellows of the APS are recognized for their exceptional contributions to the physics enterprise in outstanding resear...

Rose Ruther and Jagjit Nanda have been collaborating to develop a membrane for a low-cost redox flow battery for grid-scale energy storage.

Oak Ridge National Laboratory scientists have developed a crucial component for a new kind of low-cost stationary battery system utilizing common materials and designed for grid-scale electricity storage. Large, economical electricity storage systems can benefit the nation’s grid ...

Yu collaborates on the MAJORANA DEMONSTRATOR, which set the stage for a future experiment to search for the signal of neutrinoless double-beta decay. Single beta-decay—in which a proton becomes a neutron and emits an antineutrino and a fast-moving electro

Chang-Hong Yu of the Department of Energy’s Oak Ridge National Laboratory fell in love with running in 2008 and has since completed 38 marathons or longer-distance races. Her passion for long-distance races serves her well chasing neutrinos—electrically neutral subatomic particles th...

Graphical representation of a deuteron, the bound state of a proton (red) and a neutron (blue). Credit: Andy Sproles/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Physical Review Letters, demonstrate the ability of quantum systems to compute nuclear ph...

Oak Ridge National Laboratory researcher Arnab Banerjee has charted several accomplishments in his neutron studies of quantum phenomena.

Raman. Heisenberg. Fermi. Wollan. From Kolkata to Göttingen, Chicago to Oak Ridge. Arnab Banerjee has literally walked in the footsteps of some of the greatest pioneers in physics history—and he’s forging his own trail along the way. Banerjee is a staff scientist working in the Neu...

Shaheen Dewji, radiological scientist in the Center for Radiation Protection Knowledge within the Environmental Sciences Division at ORNL.

Having begun her career at the lab in the nuclear nonproliferation and radiation safeguards area, Shaheen Dewji is leveraging her expertise to help expand the work of the Center for Radiation Protection Knowledge (CRPK)—a unique organization led by Oak Ridge National Laboratory that ...

A conceptual illustration of proton-proton fusion in which two protons fuse to form a deuteron. Image courtesy of William Detmold.

Nuclear physicists are using the nation’s most powerful supercomputer, Titan, at the Oak Ridge Leadership Computing Facility to study particle interactions important to energy production in the Sun and stars and to propel the search for new physics discoveries Direct calculatio...

The interior of the Massachusetts Institute of Technology’s (MIT’s) Alcator C-Mod tokamak. A team led by Princeton Plasma Physics Laboratory’s C.S. Chang recently used the Titan supercomputer

The same fusion reactions that power the sun also occur inside a tokamak, a device that uses magnetic fields to confine and control plasmas of 100-plus million degrees. Under extreme temperatures and pressure, hydrogen atoms can fuse together, creating new helium atoms and simulta...