Skip to main content
A 3D printed thermal protection shield, produced by ORNL researchers for NASA, is part of a cargo spacecraft bound for the International Space Station. The shield was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. Credit: ORNL, U.S. Dept. of Energy

A research team at Oak Ridge National Laboratory have 3D printed a thermal protection shield, or TPS, for a capsule that will launch with the Cygnus cargo spacecraft as part of the supply mission to the International Space Station.

Aviation contributes about 2.5% of global carbon dioxide emissions. To greatly reduce its emissions, the U.S. commercial aviation sector needs new methods of making sustainable aviation fuel. Credit: Ross Parmly/Unsplash 

ORNL’s Zhenglong Li led a team tasked with improving the current technique for converting ethanol to C3+ olefins and demonstrated a unique composite catalyst that upends current practice and drives down costs. The research was published in ACS Catalysis.

Scientists genetically engineered bacteria for itaconic acid production, creating dynamic controls that separate microbial growth and production phases for increased efficiency and acid yield. Credit: NREL

A research team led by Oak Ridge National Laboratory bioengineered a microbe to efficiently turn waste into itaconic acid, an industrial chemical used in plastics and paints.

ORNL, in collaboration with Cincinnati, Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

ORNL researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites, demonstrating the potential for the use of large-scale multimaterial preforms to create molded composites. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites reinforced with short carbon fibers.

Distinguished Inventors

Six scientists at the Department of Energy’s Oak Ridge National Laboratory were named Battelle Distinguished Inventors, in recognition of obtaining 14 or more patents during their careers at the lab.

A Co-Optima research team led by Oak Ridge National Laboratory’s Jim Szybist in collaboration with Argonne, Sandia and the National Renewable Energy Laboratory, created a merit function tool that evaluates six fuel properties and their impact on engine performance, giving the scientific community a guide to quickly evaluate biofuels. Credit: ORNL/U.S. Dept. of Energy

As ORNL’s fuel properties technical lead for the U.S. Department of Energy’s Co-Optimization of Fuel and Engines, or Co-Optima, initiative, Jim Szybist has been on a quest for the past few years to identify the most significant indicators for predicting how a fuel will perform in engines designed for light-duty vehicles such as passenger cars and pickup trucks.

EERE Assistant Secretary Daniel Simmons, center right, with ORNL’s Xin Sun, EERE Deputy Assistant Secretary Alex Fitzsimmons and ORNL’s Moe Khaleel, helped launch new capabilities to advance connected and automated vehicle technologies at the DOE National Transportation Research Center at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL and Department of Energy officials dedicated the launch of two clean energy research initiatives that focus on the recycling and recovery of advanced manufacturing materials and on connected and

An interactive visualization shows potential progression of BECCS to address carbon dioxide reduction goals. Credit: ORNL, U.S. Dept. of Energy

The combination of bioenergy with carbon capture and storage could cost-effectively sequester hundreds of millions of metric tons per year of carbon dioxide in the United States, making it a competitive solution for carbon management, according to a new analysis by ORNL scientists.