Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 18 Results

INFUSE logo

The INFUSE fusion program announced a second round of 2020 public-private partnership awards to accelerate fusion energy development.

Chuck Kessel

Chuck Kessel was still in high school when he saw a scientist hold up a tiny vial of water and say, “This could fuel a house for a whole year.”

Water from local creeks now flows through these simulated streams in the Aquatic Ecology Laboratory, providing new opportunities to study mercury pollution and advance solutions. Credit: ORNL, U.S. Dept. of Energy

New capabilities and equipment recently installed at the Department of Energy’s Oak Ridge National Laboratory are bringing a creek right into the lab to advance understanding of mercury pollution and accelerate solutions.

MPEX ribbon cutting

Department of Energy Under Secretary for Science Paul Dabbar joined Oak Ridge National Laboratory leaders for a ribbon-cutting ceremony to mark progress toward a next-generation fusion materials project.

Light moves through a fiber and stimulates the metal electrons in nanotip into collective oscillations called surface plasmons, assisting electrons to leave the tip. This simple electron nano-gun can be made more versatile via different forms of material composition and structuring. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

Scientists at ORNL and the University of Nebraska have developed an easier way to generate electrons for nanoscale imaging and sensing, providing a useful new tool for material science, bioimaging and fundamental quantum research.

Innovation Network for Fusion Energy, or INFUSE

The Department of Energy announced awards for 10 projects with private industry that will allow for collaboration with DOE national laboratories in accelerating fusion energy development.

This photo shows the interior of the vessel of the General Atomics DIII-D National Fusion Facility in San Diego, where ORNL researchers are testing the suitability of tungsten to armor the inside of a fusion device. Credit: General Atomics

The inside of future nuclear fusion energy reactors will be among the harshest environments ever produced on Earth. What’s strong enough to protect the inside of a fusion reactor from plasma-produced heat fluxes akin to space shuttles reentering Earth’s atmosphere?

ORNL’s Drew Elliott served as a major collaborator in upgrading the Princeton Plasma Physics Laboratory’s Lithium Tokamak Experiment-Beta. Credit: Robert Kaita, Princeton Plasma Physics Laboratory

Lithium, the silvery metal that powers smart phones and helps treat bipolar disorders, could also play a significant role in the worldwide effort to harvest on Earth the safe, clean and virtually limitless fusion energy that powers the sun and stars.

Juergen Rapp

Juergen Rapp, a distinguished R&D staff scientist in ORNL’s Fusion Energy Division in the Nuclear Science and Engineering Directorate, has been named a fellow of the American Nuclear Society

ORNL scientists are currently using Proto-MPEX to perform necessary research and development that is needed to build MPEX. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy

Temperatures hotter than the center of the sun. Magnetic fields hundreds of thousands of times stronger than the earth’s. Neutrons energetic enough to change the structure of a material entirely.