Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Alexander I Kolesnikov
- Alexei P Sokolov
- Bekki Mills
- Bruce Moyer
- Christopher Rouleau
- Costas Tsouris
- Debjani Pal
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jeffrey Einkauf
- Jennifer M Pyles
- John Wenzel
- Jong K Keum
- Justin Griswold
- Keju An
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark Loguillo
- Matthew B Stone
- Mike Zach
- Mina Yoon
- Padhraic L Mulligan
- Radu Custelcean
- Sandra Davern
- Shannon M Mahurin
- Tao Hong
- Tomonori Saito
- Victor Fanelli

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.