Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Sam Hollifield
- Travis Humble
- Alexander I Kolesnikov
- Alexei P Sokolov
- Bekki Mills
- Bogdan Dryzhakov
- Brian Weber
- Christopher Rouleau
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- John Wenzel
- Jong K Keum
- Joseph Olatt
- Keju An
- Kevin Spakes
- Kunal Mondal
- Kyle Kelley
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Loguillo
- Mary A Adkisson
- Matthew B Stone
- Mina Yoon
- Oscar Martinez
- Radu Custelcean
- Samudra Dasgupta
- Shannon M Mahurin
- Steven Randolph
- Tao Hong
- T Oesch
- Tomonori Saito
- Victor Fanelli

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Neutron beams are used around the world to study materials for various purposes.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.