Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Sam Hollifield
- Andrzej Nycz
- Chad Steed
- Chris Masuo
- Hongbin Sun
- Junghoon Chae
- Luke Meyer
- Mingyan Li
- Travis Humble
- William Carter
- Aaron Werth
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Ali Passian
- Bekki Mills
- Brian Weber
- Bruce Hannan
- Dave Willis
- Emilio Piesciorovsky
- Gary Hahn
- Harper Jordan
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- John Wenzel
- Joseph Olatt
- Joshua Vaughan
- Keju An
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Loren L Funk
- Luke Chapman
- Luke Koch
- Mahim Mathur
- Mark Loguillo
- Mark Provo II
- Mary A Adkisson
- Matthew B Stone
- Nance Ericson
- Oscar Martinez
- Peter Wang
- Polad Shikhaliev
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Raymond Borges Hink
- Rob Root
- Ruhul Amin
- Samudra Dasgupta
- Shannon M Mahurin
- Srikanth Yoginath
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- T Oesch
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vishaldeep Sharma
- Vladislav N Sedov
- Yacouba Diawara
- Yarom Polsky
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Neutron beams are used around the world to study materials for various purposes.