Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Ahmed Hassen
- Greg Larsen
- James Klett
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Nadim Hmeidat
- Olga S Ovchinnikova
- Trevor Aguirre
- Vlastimil Kunc
- Kashif Nawaz
- Stephen Jesse
- Steven Guzorek
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Fricke
- Brittany Rodriguez
- Charlie Cook
- Chengyun Hua
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Debangshu Mukherjee
- Dustin Gilmer
- Gabor Halasz
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Jiaqiang Yan
- John Lindahl
- Jong K Keum
- Jordan Wright
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Petro Maksymovych
- Radu Custelcean
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Steven Randolph
- Subhabrata Saha
- Sumner Harris
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Utkarsh Pratiush
- Vipin Kumar
- Zhiming Gao

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.

In scientific research and industrial applications, selecting the most accurate model to describe a relationship between input parameters and target characteristics of experiments is crucial.

Silicon nitride fiber is a critical material mainly used in the aerospace industry but has many applications. This fiber is prized for its properties, as it is transparent to electromagnetic radiation but allows signals to go through it.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.