Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Kashif Nawaz
- Stephen Jesse
- Stephen M Killough
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Bogdan Dryzhakov
- Brian Fricke
- Bryan Maldonado Puente
- Chengyun Hua
- Christopher Rouleau
- Corey Cooke
- Costas Tsouris
- Debangshu Mukherjee
- Diana E Hun
- Gabor Halasz
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Jiaqiang Yan
- John Holliman II
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nolan Hayes
- Ondrej Dyck
- Peter Wang
- Petro Maksymovych
- Philip Boudreaux
- Radu Custelcean
- Ryan Kerekes
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sally Ghanem
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Zhiming Gao

Technologies for optimizing prefab retrofit panel installation using a real-time evaluator is described.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.

This technology introduces an advanced machine learning approach for enhancing chemical imaging by correlating data from two mass spectrometry imaging (MSI) techniques.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.