Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Kuntal De
- Udaya C Kalluri
- Alexander I Wiechert
- Alex Walters
- Benjamin Manard
- Biruk A Feyissa
- Bruce Moyer
- Charles F Weber
- Chris Masuo
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Govindarajan Muralidharan
- Isaac Sikkema
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Justin Griswold
- Kunal Mondal
- Laetitia H Delmau
- Luke Sadergaski
- Mahim Mathur
- Matt Vick
- Mike Zach
- Mingyan Li
- Oscar Martinez
- Padhraic L Mulligan
- Rose Montgomery
- Sam Hollifield
- Sandra Davern
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Vincent Paquit
- Xiaohan Yang

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

The invention provides a gene and methods for maintaining meiotic chromosomal architecture

An innovative system for automating the surveillance and manipulation of plant tissues using advanced machine vision and robotic tools.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.