Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Ying Yang
- Alice Perrin
- Andrzej Nycz
- Josh Michener
- Kuntal De
- Steven J Zinkle
- Udaya C Kalluri
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Alex Walters
- Amit Shyam
- Austin Carroll
- Biruk A Feyissa
- Bruce A Pint
- Carrie Eckert
- Chris Masuo
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David S Parker
- Debjani Pal
- Gerald Tuskan
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James A Haynes
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Kyle Davis
- Liangyu Qian
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Paul Abraham
- Radu Custelcean
- Ryan Dehoff
- Serena Chen
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Vilmos Kertesz
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yang Liu

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.

Genetic modification of microbes that are thermophiles—ones that grow at elevated temperatures—is extremely challenging. Tools developed for E. coli, a typical host for protein production, typically do not function at elevated temperatures.

The invention provides a gene and methods for maintaining meiotic chromosomal architecture

An innovative system for automating the surveillance and manipulation of plant tissues using advanced machine vision and robotic tools.

High-performance cerium-based permanent magnet materials have been developed to reduce reliance on scarce rare-earth elements.