Abstract
Extreme weather events, such as hurricanes, severe thunderstorms, and floods can significantly disrupt power grid systems, leading to electrical outages that result in inconvenience, economic losses, and life-threatening situations. There is a growing need for a robust and precise predictive model to forecast power outages, which will help prioritize emergency response before, during, and after extreme weather events. In this paper, we introduce machine-learning models that predict power outage risk at the state level during and after extreme weather events. We jointly utilized two publicly available datasets: the U.S. historical power outage data collected by the Environment for Analysis of Geo-Located Energy Information (EAGLE-I™) system, and the National Weather Service historical weather alert data sets. We highlight our initial result and discuss future work aimed at enhancing the model's robustness and accuracy for real-world applications.