For pioneering research in disturbance and landscape ecology and in modeling of land-use change with its implications for global changes, which have influenced environmental decision making on a worldwide scale.
For significant advancement of welding science and technology through original and definitive research, particularly for contributions to understanding the solidification behavior of the weld pool, phase stability microstructure-property correlations in welds, and continued leadership and outstanding service to the national and international welding research community.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.
For contributions to nuclear data measurement, analysis, and applications, through determination and development of neutron-induced reaction cross sections, high-resolution neutron scattering, the nonlocal nuclear optical model, and uncertainty and covariance information
For original studies of the genetic effects of radiation in mammals. A world authority on mammalian mutagenesis, he and co-workers provided the experimental basis for estimating the genetic hazards of radiation to man and for the corresponding recommendations of national and international standards bodies