For his leadership in separations science and technology; for improving nuclear fuel recycling and waste removal; and for leading the development process that was instrumental in the cleanup of waste at the Savannah River Site.
For his innovation in the production and application of medical isotopes; for advancing the separation and purification of actinides and heavy elements; and for his leadership in the use of alpha emitters to save the lives of cancer patients.
For his broad scientific contributions and international reputation in aqueous chemistry and geochemistry; for his research into the structure, dynamics, and reactions at fluid–solid interfaces; and for his leadership and service to ORNL and the international scientific community.
For far-reaching accomplishments on national security issues relating to nuclear weapons proliferation, security of nuclear materials, and counterterrorism.
For internationally recognized contributions in distributed and cluster computing, including the development of the Parallel Virtual Machine and the Message Passing Interface standard now widely used in science to solve computational problems in biology, physics, chemistry, and materials science.
For pioneering accomplishments in the fields of global optimization, artificial neural networks, and high performance computing based on quantum devices.
For leadership in the development of high-temperature materials for energy and space applications, based on innovative use of physical metallurgy principles and basic physics knowledge to understand crystal structures and the mechanical properties of structural materials.
For innovative and fundamental contributions to the understanding of the interactions and transport of electrons in gases and liquids, negative ion processes, the interfacing of the gaseous and condensed phases of matter, and the use of fundamental knowledge in the development of gaseous dielectrics, radiation detectors, and pulsed power
For fundamental studies in radiation physics, radiation dosimetry, and surface physics and for pioneering theoretical work on collective electron modes, surface electromagnetic waves in solids, and elucidation of the interaction of charged particles with matter.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.