Skip to main content
Two hybrid poplar plants, middle and right, engineered with the PtrXB38 hub gene exhibited a drastic increase in root and callus formation compared with a wild-type control plant, left. Credit: Tao Yao/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists identified a gene “hotspot” in the poplar tree that triggers dramatically increased root growth. The discovery supports development of better bioenergy crops and other plants that can thrive in difficult conditions while storing more carbon belowground.

ORNL and Enginuity researchers proved that a micro combined heat and power prototype, or mCHP, with an opposed piston engine can achieve more than 93% overall energy efficiency. The environmentally friendly mCHP can replace a back-up generator or traditional hot water heater. Credit: ORNL, U.S. Department of Energy

ORNL researchers, in collaboration with Enginuity Power Systems, demonstrated that a micro combined heat and power prototype, or mCHP, with a piston engine can achieve an overall energy efficiency greater than 93%. 

Oak Ridge National Laboratory researchers developed a device called a piezoelectric-driven magnetic actuator, or PEDMA, that can be inserted into the header of a microchannel heat exchanger to keep refrigerants flowing evenly and the HVAC unit running efficiently. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that microchannel heat exchangers in heating, ventilation and air conditioning units can keep refrigerants evenly and continually distributed by inserting a device called a piezoelectric-driven

Caption: ORNL researchers demonstrated a system that can detect propane leaks within seconds and notify emergency services immediately, well before flames ignite. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that an electrochemical sensor paired with a transmitter not only detects propane leaks within seconds, but it can also send a signal to alert emergency services.

An algorithm developed and field-tested by ORNL researchers uses machine learning to maintain homeowners’ preferred temperatures year-round while minimizing energy costs. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers designed and field-tested an algorithm that could help homeowners maintain comfortable temperatures year-round while minimizing utility costs.

Buildings—Reaching the boiling point

Researchers at Oak Ridge National Laboratory demonstrated that metal foam enhances the evaporation process in thermal conversion systems and enables the development of compact HVAC&R units.

Coexpression_hi-res_image[1].jpg

While studying the genes in poplar trees that control callus formation, scientists at Oak Ridge National Laboratory have uncovered genetic networks at the root of tumor formation in several human cancers.

Buildings-Inside_out.jpg

Vacuum insulation technology called modified atmosphere insulation, or MAI, could be a viable solution for improving the energy performance of buildings, based on a study by Oak Ridge National Laboratory and industry partners.

Researchers 3D printed molds for precasting concrete using the Big Area Additive Manufacturing, or BAAM™, system at DOE’s Manufacturing Demonstration Facility at ORNL. Complex, durable mold designs can be produced in less time than traditional wood or fib

The construction industry may soon benefit from 3D printed molds to make concrete facades, promising lower cost and production time. Researchers at Oak Ridge National Laboratory are evaluating the performance of 3D printed molds used to precast concrete facades in a 42-story buildin...

EPSP_gene_study2_ORNL.jpg

For decades, biologists have believed a key enzyme in plants had one function—produce amino acids, which are vital to plant survival and also essential to human diets. But for Wellington Muchero, Meng Xie and their colleagues, this enzyme does more than advertised. They had run a series of experiments on poplar plants that consistently revealed mutations in a structure of the life-sustaining enzyme that was not previously known to exist.